scholarly journals Impact of in situ physical and chemical cleaning on PVDF membrane properties and performances

2015 ◽  
Vol 122 ◽  
pp. 426-435 ◽  
Author(s):  
M.F. Rabuni ◽  
N.M. Nik Sulaiman ◽  
M.K. Aroua ◽  
Ching Yern Chee ◽  
N. Awanis Hashim
2021 ◽  
Vol 5 (7) ◽  
pp. 191
Author(s):  
Yanshuai Wang ◽  
Siyao Guo ◽  
Biqin Dong ◽  
Feng Xing

The functionalization of graphene has been reported widely, showing special physical and chemical properties. However, due to the lack of surface functional groups, the poor dispersibility of graphene in solvents strongly limits its engineering applications. This paper develops a novel green “in-situ titania intercalation” method to prepare a highly dispersed graphene, which is enabled by the generation of the titania precursor between the layer of graphene at room temperature to yield titania-graphene nanocomposites (TiO2-RGO). The precursor of titania will produce amounts of nano titania between the graphene interlayers, which can effectively resist the interfacial van der Waals force of the interlamination in graphene for improved dispersion state. Such highly dispersed TiO2-RGO nanocomposites were used to modify epoxy resin. Surprisingly, significant enhancement of the mechanical performance of epoxy resin was observed when incorporating the titania-graphene nanocomposites, especially the improvements in tensile strength and elongation at break, with 75.54% and 176.61% increases at optimal usage compared to the pure epoxy, respectively. The approach presented herein is easy and economical for industry production, which can be potentially applied to the research of high mechanical property graphene/epoxy composite system.


2016 ◽  
Vol 9 (3) ◽  
pp. 357-394 ◽  
Author(s):  
I. F. Torres ◽  
T. Andrade

ABSTRACT Currently, there is an awareness that is critical to assess the durability characteristics of concrete with as much attention as the mechanical properties. The durability of concrete structures can often be affected by chemical attacks, jeopardizing its performance and security. When concrete is subjected to high temperature at early ages, many physical and chemical changes in hardened concrete may occur. It iswidely accepted that concrete subjected to these conditions of temperature and exposed to moisture is prone to cracking due to Delayed Ettringite Formation (DEF). This work aims at providing a DEF risk analysis on foundation pile caps at the Metropolitan Region of Recife - PE. Temperature rise measurement was performed in situ at 5 different caps through datalogger and thermocouples equipments. Furthermore, the Duggan test was performed in order to assess the level of expansion of 3 cements studied: X (CP II E 40), Y (CP II F 32) and Z (CP V ARI RS). Simultaneously, the chemical compositions of these cements and their respective clinkers were quantified by analysis of X-ray fluorescence (XRF). The cement X (CP II E 40) showed the chemical characteristics favoring with more intensity DEF and, as a result, higher level of expansion in the test Duggan. It is noteworthy that incorporation of metakaolin (8% and 16%) and silica fume (5% and 10%) showed mitigating potential of expansions. It is important to point out that all factors related to thermal properties and chemical composition of the concrete used in the region converge to a condition of ideal susceptibility for triggering DEF. Therefore, it is essential at least minimum and basic requirements in the design specification in order to avoid high temperatures in the massive concrete elements, preventing them from delayed ettringite formation.


2018 ◽  
Vol 4 ◽  
pp. 186-192 ◽  
Author(s):  
Liwei Liu ◽  
Jin Tian ◽  
Chunhui Luo ◽  
Chunsheng Chen ◽  
Jicheng Liu ◽  
...  

2014 ◽  
pp. 75-80
Author(s):  
Károly Bakos ◽  
Attila Dobos ◽  
János Nagy

In this article we are presenting the methodology applied to analyse and interpret the topsoil surface reflectance parameters of multiple samples collected in the Mugello valley area in northern Italy in October 2012. The main aim of the whole project was to discover geomorphological behaviour and situation of the area ino order to improve potential for correct dating of certain archaeological artefacts found in the nearby areas. One of the crucial problem researchers are facing in the area is the lack of understanding of the underlying geological and geomorphological processes that were describing and characterizing the area and that played important role not only in the current geography and landscape formation but also in the transportation of various sediments and artefacts. In this particular research the main aim is to examine the possibility of developing a quick way to assess low level properties of the soil using hand held spectrometer and rapid analysis of cross-section using in situ measurement techniques. In this work we collected over 2000 individual samples of topsoil surface reflectance properties that we organized into a spectral library. This library is then to be used to describe physical and chemical processes in the soil. To support the analysis results were compared to analysis results from different kind of assessments in the same area. Our results show a great potential of application of hand held imaging spectrometer in soil property analysis based on the top soil surface reflectance parameters.


Author(s):  
Efraín Rodríguez Rubio ◽  
Alan Giraldo

Malpelo Island forms the insular ecoregion of the Colombian Pacific, and is composed by a mosaic of terrestrial ecosystems, and unique coastal and shallow subtidal systems. Considering its insular nature, the oceanographic features of this locality are expected to be related with the physical and chemical dynamics of the Eastern Tropical Pacific (ETP) and be modulated by the regional dynamic of the Colombian Pacific Oceanic Basin (COPC in Spanish). In this work, in situ data was used to describe the thermohaline conditions in the water column in Malpelo Island and identify key water mass during the two contrasting hydro-meteorological periods of the COPC. Furthermore, we analyzed the thermal and haline variability in the COPC and defined the surface geostrophic flow from in situ oceanographic data during the same time in order to evaluate its effect on the oceanographic conditions in the pelagic environment off Malpelo Island.


2015 ◽  
Vol 9 (4) ◽  
pp. 4437-4457 ◽  
Author(s):  
S. S. Thompson ◽  
B. Kulessa ◽  
R. L. H. Essery ◽  
M. P. Lüthi

Abstract. Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.


2015 ◽  
Vol 15 (5) ◽  
pp. 999-1010 ◽  
Author(s):  
Ahmed E. Abdelhamid ◽  
Mahmoud M. Elawady ◽  
Mahmoud Ahmed Abd El-Ghaffar ◽  
Abdelgawad M. Rabie ◽  
Poul Larsen ◽  
...  

The zwitterionic homopolymer poly[2-(methacryloyloxy)ethyl-dimethyl-(3-sulfopropyl) ammonium hydroxide was coated onto the surface of commercial polyamide reverse osmosis (RO) membranes. Aqueous solutions of the polymer at different concentrations were applied to modify the polyamide membranes through an in situ surface coating procedure. After membrane modification, cross-flow filtration testing was used to test the antifouling potential of the modified membranes. The obtained data were compared with experimental data for unmodified membranes. Each test was done by cross-flow filtering tap water for 60 hours. Yeast extract was added as a nutrient source for the naturally occurring bacteria in tap water, to accelerate bacteria growth. Fourier transform infrared spectroscopy, contact angle, scanning electron microscopy, atomic force microscopy, and permeation tests were employed to characterize membrane properties. The results confirmed that modifying the membranes enhanced their antifouling properties and cleaning efficiency, the fouling resistance to bacteria improving due to the increased hydrophilicity of the membrane surface after coating. In addition, the water permeability and salt rejection improved. This in situ surface treatment approach for RO membranes could be very important for modifying membranes in their original module assemblies as it increases water production and reduces the salt content.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 545 ◽  
Author(s):  
Rathmalgodage Thejani Nilusha ◽  
Tuo Wang ◽  
Hongyan Wang ◽  
Dawei Yu ◽  
Junya Zhang ◽  
...  

The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.


Sign in / Sign up

Export Citation Format

Share Document