scholarly journals Enhanced Tensile Strength of Monolithic Epoxy with Highly Dispersed TiO2-Graphene Nanocomposites

2021 ◽  
Vol 5 (7) ◽  
pp. 191
Author(s):  
Yanshuai Wang ◽  
Siyao Guo ◽  
Biqin Dong ◽  
Feng Xing

The functionalization of graphene has been reported widely, showing special physical and chemical properties. However, due to the lack of surface functional groups, the poor dispersibility of graphene in solvents strongly limits its engineering applications. This paper develops a novel green “in-situ titania intercalation” method to prepare a highly dispersed graphene, which is enabled by the generation of the titania precursor between the layer of graphene at room temperature to yield titania-graphene nanocomposites (TiO2-RGO). The precursor of titania will produce amounts of nano titania between the graphene interlayers, which can effectively resist the interfacial van der Waals force of the interlamination in graphene for improved dispersion state. Such highly dispersed TiO2-RGO nanocomposites were used to modify epoxy resin. Surprisingly, significant enhancement of the mechanical performance of epoxy resin was observed when incorporating the titania-graphene nanocomposites, especially the improvements in tensile strength and elongation at break, with 75.54% and 176.61% increases at optimal usage compared to the pure epoxy, respectively. The approach presented herein is easy and economical for industry production, which can be potentially applied to the research of high mechanical property graphene/epoxy composite system.

2015 ◽  
Vol 9 (4) ◽  
pp. 4437-4457 ◽  
Author(s):  
S. S. Thompson ◽  
B. Kulessa ◽  
R. L. H. Essery ◽  
M. P. Lüthi

Abstract. Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.


2019 ◽  
Vol 23 ◽  
pp. 75-81
Author(s):  
Ponnusamy Senthil Kumar ◽  
G. Janet Joshiba

The discovery of carbon nanotubes is one of the remarkable achievement in the field of material science and it is a great advancement of Nanotechnology. A carbon nanotube is an expedient material used in several domains and paves way for the welfare of humans in many ways. Carbon nanotubes are nanosized tubes made from graphitic carbons and it is well known for its exclusive physical and chemical properties. The market demand for the nanotubes has increased progressively due to its size dependent, structure and mechanical properties. The carbon nanotubes possess high tensile strength and it is also found to be the durable fibre ever known. It is also found to possess exceptional electrical properties. The carbon nanotube composites have an excellent young’s modulus and higher tensile strength same as graphite carbon. This review plots the properties of carbon nanotubes and portrays the planning and properties of carbon nanotube composites. The wide application of carbon nanotube composites is also explained.


1981 ◽  
Vol 6 ◽  
Author(s):  
Paul G. Huray ◽  
M. T. Spaar ◽  
S. E. Nave ◽  
J. M. Legan ◽  
L. A. Boatner ◽  
...  

The electronic charge states and site symmetries of the radioactive ions incorporated in nuclear waste forms are of considerable importance in determining the physical and chemical properties of these materials. An in situ characterization of these ions is, unfortunately, often difficult – especially when a mixture of charge states and local crystal symmetries exist. The application of Mbssbauer spectroscopy represents a powerful technique for obtaining solid state chemical information.


2017 ◽  
Vol 30 (10) ◽  
pp. 1159-1168 ◽  
Author(s):  
Animesh Sinha ◽  
Nazrul Islam Khan ◽  
Subhankar Das ◽  
Jiawei Zhang ◽  
Sudipta Halder

The effect of reactive (polyethylene glycol) and non-reactive (toluene) diluents on thermal and mechanical properties (tensile strength, hardness and fracture toughness) of diglycidyl ether of bisphenol A epoxy resin (cured by triethylenetetramine) was investigated. The thermal stability and mechanical properties of the epoxy resin modified with reactive and non-reactive diluents at different wt% were investigated using thermo-gravimetric analyser, tensile test, hardness test and single-edge-notched bend test. A minor variation in thermal stability was observed for epoxy resin after addition of polyethylene glycol and toluene at 0.5 wt%; however, further addition of reactive and non-reactive diluents diminished the thermal stability. The addition of 10 wt% of polyethylene glycol in epoxy resin significantly enhances the tensile strength (∼12%), hardness (∼14%) and fracture toughness (∼24%) when compared to that of neat epoxy resin. In contrast, major drop in mechanical performance was observed after addition of toluene in epoxy. Furthermore, fracture surfaces were investigated under field emission scanning electron microscope to elucidate the failure mechanism.


2015 ◽  
Vol 228 ◽  
pp. 132-137 ◽  
Author(s):  
B. Łosiewicz ◽  
Grzegorz Dercz ◽  
Magdalena Popczyk

The Ni-Mo+MoO2composite coatings were obtained onto the steel substrate using anin situco-deposition of a Ni-Mo alloy and MoO2powder particles maintained in suspension in the potassium pyrophosphate bath. To characterize the physical and chemical properties of the obtained coatings, SEM, EDS, and XRD methods, were applied. It was found that the co-deposited MoO2particles strongly influenced the properties of the Ni-Mo alloy coating. In comparison with the comparable Ni-Mo deposit containing 45 at.% of Mo, the presence of MoO2embedded into the composite coating diminished the content of Mo alloyed with Ni to 23 at.%. The electrodeposited Ni-Mo+MoO2composite coating obtained under proposed electrochemical conditions contained 25 at.% of MoO2. The effect of the embedded MoO2as composite component on changes of the surface morphology and structure of the Ni-Mo binary alloy, was also discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tong Liu ◽  
Shijun Yu ◽  
Xiaoshan Zhu ◽  
Ran Liao ◽  
Zepeng Zhuo ◽  
...  

Microplastics (MPs) have become the widespread contaminants, which raises concerns on their ecological hazards. In-situ detection of MP in water bodies is essential for clear assessment of the ecological risks of MPs. The present study proposes a method based on polarized light scattering which measures the polarization parameters of the scattered light at 120° to detect MP in water. This method takes the advantage of in-situ measurement of the individual particles and the experimental setup in principle is used. By use of the measured polarization parameters equipped by machine learning, the standard polystyrene (PS) spheres, natural water sample, and lab-cultured microalgae are explicitly discriminated, and MP with different physical and chemical properties can be differentiated. It can also characterize the weathering of different MP and identify the specific type from multiple types of MP. This study explores the capability of the proposed method to detect the physical and chemical properties, weathering state and concentration of MP in water which promises the future application in water quality sensing and monitoring.


Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
pp. 44-57
Author(s):  
Jürgen Rullkötter ◽  
John Farrington

The severity of oil spills depends on the quantity of material released and its physical and chemical properties. The total amount of petroleum spilled during the Deepwater Horizon incident and the relative fractions of the chemical compound classes of the Macondo oil were obtained by measurements, observations, and model calculations, with a significant amount of uncertainty. Because petroleum is an extremely complex mixture of many thousands or more of gaseous, liquid, and solid constituents, full elucidation of their compositions at the molecular level is impossible with presently available analytical techniques. This paper reviews published work on widely used analytical techniques and points out that scientists’ varying approaches to research questions and preferences for methods of analysis constitute a source of uncertainty. In addition, the focus is on two technical advancements developed over the last two decades, namely two-dimensional gas chromatography and Fourier transform ion cyclotron resonance mass spectrometry. Both were particularly valuable in the analysis of the spilled Macondo oil and its weathering products. Among the different processes of alteration of the original oil, only in situ oil burning is dealt with in this paper. This review reveals the paucity of data on this mitigation process and shows the need for more systematic coordination of methods in burned oil research studies.


2008 ◽  
Vol 16 (8) ◽  
pp. 527-533 ◽  
Author(s):  
Sheng Liu ◽  
Hui Zhang ◽  
Zhong Zhang ◽  
Taihua Zhang ◽  
Stephan Sprenger

Flexible organic elastomeric nanoparticles (ENP) and two kinds of rigid inorganic silica nanoparticles were dispersed respectively into a bisphenol-A epoxy resin in order to tailor and compare the performance of mechanical properties. It was found that the well-dispersed flexible ENP greatly enhanced the toughness of the epoxy with the cost of modulus and strength. Comparatively, the rigid silica nanoparticles improved Young's modulus, tensile strength and fracture toughness simultaneously. Both fumed and sol-gel-formed nanosilica particles conducted similar results in reinforcing the epoxy resin, although the latter exhibited almost perfect nanoparticle dispersion in matrix. The toughening mechanisms of nanocomposites were further discussed based on fractographic analysis.


Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
AJ Koppi

A common toposequence on Bunya Phyllite in south-east Queensland was studied in detail at a representative site. Four sample profiles on the slope are described, and some physical and chemical properties are given. The clay minerals, derived from the weathering of the quartz-sericite-chlorite phyllite, comprise dioctahedral mica, dioctahedral vermiculite, an interstratification of these minerals, and kaolin. Properties are related to the slope; and the clay-rich horizon of the middle and lower slopes is considered to be formed mostly by in situ weathering. The classification of the genetic unit given by the slope and parent material is discussed.


Author(s):  
Ahmed Nabile Emam ◽  
Ahmed Sadek Mansour ◽  
Emad Girgis ◽  
Mona Bakr Mohamed

The recent extensive interest of nanostructure materials associated with their unique properties is motivated to develop new hybrid nanocomposites that couple two nano-components together in the form of Core/Shell, nanoalloys, and doped nanostructures. Hybrid nanostructure provides another opportunity for tuning the physical and chemical properties at the nanoscale. This opens the door for the discovery of new properties and potential for more applications. This chapter is devoted to present, and discuss the recent advances and progress relevance for Plasmonic hybrid nanocomposites. In addition, literature reviewed on different attempts to obtain high quality plasmonic nanocomposites via chemical routes, and their physico-chemical aspects for this class of novel nanomaterials. The authors presented their recent published work regarding Plasmonic hybrid nanostructure regarding plasmonic-semiconductor, plasmonic magnetic and plasmonic graphene nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document