Filtered model for the cold-model gas–solid flow in a large-scale MTO fluidized bed reactor

2016 ◽  
Vol 143 ◽  
pp. 369-383 ◽  
Author(s):  
Li-Tao Zhu ◽  
Le Xie ◽  
Jie Xiao ◽  
Zheng-Hong Luo
1997 ◽  
Vol 91 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Youchu Li ◽  
Yongqi Lu ◽  
Fengming Wang ◽  
Kai Han ◽  
Wensheng Mi ◽  
...  

2015 ◽  
Vol 19 (1) ◽  
pp. 317-328 ◽  
Author(s):  
Giuseppe Canneto ◽  
Cesare Freda ◽  
Giacobbe Braccio

The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.


2001 ◽  
Vol 44 (6) ◽  
pp. 141-147 ◽  
Author(s):  
R. Saravanane ◽  
D. V.S. Murthy ◽  
K. Krishnaiah

Starch manufacturing industrial units, such as sago mills, both at medium and large scale, suffer from inadequate treatment and disposal problems due to high concentration of suspended solid content present in the effluent. In order to investigate the viability of treatment of sago effluent, a laboratory scale study was conducted. The treatment of sago effluent was studied in a continuous flow anaerobic fluidized bed reactor. The start-up of the reactor was carried out using a mixture of digested supernatant sewage sludge and cow dung slurry in different proportions. The effect of operating variables such as COD of the effluent, bed expansion, minimum fluidization velocity on efficiency of treatment and recovery of biogas was investigated. The treated wastewater was analysed for recycling and reuse to ensure an alternative for sustainable water resourse management. The maximum efficiency of treatment was found to be 82% and the nitrogen enriched digested sludge was recommended for agricultural use.


2011 ◽  
Vol 201-203 ◽  
pp. 2741-2744
Author(s):  
Ya Ting Zhang ◽  
Guang Heng Wang ◽  
Wei Zhao ◽  
An Ning Zhou

The flow state of both the solid and gas phase in the fluidized-bed photo-oxidation reactor for Shenfu coal was studied by cold-model tests. The results showed that the appropriate pipe diameter, particle size of coal, and the coal addition for the gas-solid fluidized-bed reactor were 22 mm, 60-80 mesh, and 10g, respectively.


2014 ◽  
Vol 60 ◽  
pp. 1-16 ◽  
Author(s):  
Ya-Qing Zhuang ◽  
Xiao-Min Chen ◽  
Zheng-Hong Luo ◽  
Jie Xiao

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Kamil Idziak ◽  
Tomasz Czakiert ◽  
Jaroslaw Krzywanski ◽  
Anna Zylka ◽  
Wojciech Nowak

Abstract The results of investigations on solids flow in a cold model of the dual fluidized bed reactor designed for chemical looping combustion of solid fuels (DFB-CLC-SF) are presented in this paper. The constructed unit consists of two interconnected reactors. The first one, so-called fuel reactor (FR), is operated under bubbling fluidized bed (BFB) conditions, whereas the second one, so-called air reactor (AR), is structurally divided into two sections. The bottom part of AR works under BFB while the upper part, i.e., the riser, is operated in the fast fluidized bed (FFB) regime. In these studies, the air was used for fluidization process in all parts of the DFB-CLC-SF reactor. The glass beads with similar parameters to oxygen carriers (OCs) used in the CLC process were utilized as an inventory. The fluidization conditions are controlled by using the sets of pressure sensors installed around the circulation loop. The experimental data acquired in the tests are further employed to the analysis of solids behavior in a cold model of the DFB-CLC-SF reactor. The main goal of these studies was to establish the conditions for smooth fluidization, which concurrently provide the required residence time of solids in both reactors that is one of the most crucial factors in the CLC process. It was found that the fluidizing gas velocity in reactors has a significant impact on solids behavior and the investigated parameters. However, what is the most important, it was confirmed that the operation condition of the DFB-CLC-SF reactor can be adjusted to meet the requirements resulting from the properties of OCs.


2012 ◽  
Vol 550-553 ◽  
pp. 529-533
Author(s):  
De Wu Wang ◽  
Meng Da Jia ◽  
Shao Feng Zhang ◽  
Chun Xi Lu

A large-scale cold model experimental setup of combined riser with variable constraint exit (CRVCE) was established. The axial and radial distributions of solids holdup and particle velocity, under different operating conditions, were investigated experimentally, and the results were compared with conventional riser (CR). Experimental results showed that, the exit restrictive effect of combined riser with variable constraint exit was weak when particle circulation flux and static bed height in upper fluidized bed were lower, while it turned to be strong when superficial gas velocity and static bed height in upper fluidized bed were higher. Under the same conditions, averaged cross-sectional solids holdup of CRVCE was characterized by C type distribution when article circulation flux was higher, while that of CR with weak constraint exit was characterized by linear distribution. In axial direction, averaged cross-sectional particle velocity of CRVCE changed in order: acceleration-constant-decrease velocity, while that of CR changed in another: acceleration-constant velocity. The maximum of local solids holdup value of CRVCE appeared at the dimensionless radius position r/R=0.7, while that of CR appeared in the wall region. Their local particle velocities were similar in the core region, while local particle velocity of CRVCE was lower than that of CR in the annular region.


Sign in / Sign up

Export Citation Format

Share Document