Wavelet based calibration model building of NIR spectroscopy for in-situ measurement of granule moisture content during fluidized bed drying

2020 ◽  
Vol 226 ◽  
pp. 115867
Author(s):  
Jingxiang Liu ◽  
Tao Liu ◽  
Guoqing Mu ◽  
Junghui Chen
2020 ◽  
Vol 63 (3) ◽  
pp. 583-595 ◽  
Author(s):  
Kaushik Luthra ◽  
Sammy S. Sadaka

Highlights Fluidized bed drying of rice has several advantages that outweigh its disadvantages. Increasing the drying temperature above 60°C could reduce rice quality. Research related to energy and exergy efficiencies in fluidized bed dryers of rice is needed. Abstract. Rice (Oryza sativa L.) is a staple food for more than half the world’s population. World rice production reached approximately 740 million metric tons (MMT) in 2018 due to the ever-increasing demand driven by population and economic growth. Rice producers face challenges in meeting this demand, especially in developing countries where rice is prone to spoilage if the moisture content is not reduced to a safe level shortly after harvest. Rice producers, particularly in developing countries, typically use conventional drying methods, i.e., sun drying and natural air drying. These methods are time-consuming and environmentally dependent. On the other hand, fluidized bed drying, which is a well established technology, could provide rice producers with an effective drying technique that is quick, practical, affordable, and portable. Several innovative designs for fluidized bed dryers have been developed that could be installed on-farm or off-farm at a reasonable cost. Some studies have mentioned that the main advantage of fluidized bed drying is the increase in drying rate and the reduction of rice spoilage after harvest. Conversely, other studies have raised alarms regarding low rice quality, which is seen as a significant flaw of fluidized bed drying. Due to this lack of consensus, there is a great need to review this drying technology objectively. Therefore, this review article explores fluidized bed drying and details its advantages and disadvantages related to rice drying. It also sheds light on the effects of the operating parameters involved in fluidized bed drying, i.e., rice moisture content, drying temperature, airflow rate, air velocity, drying duration, and tempering duration, on dryer performance and rice quality. Several fluidized bed numerical models are also reviewed and evaluated. Additionally, this review explores the energy and exergy efficiencies of fluidized bed dryers and suggests opportunities for research associated with fluidized bed drying of rice. Keywords: Energy, Exergy, Fluidized bed drying, Fluidized bed modeling, Moisture content, Rice quality, Rough rice, Tempering.


2021 ◽  
Author(s):  
Rakesh Kumar Kumar Raigar ◽  
Shubhangi Srivast ◽  
Hari Niwas Mishra

Abstract The possibility of rapid estimation of moisture, protein, fat, free fatty acid (FFA), and peroxide value (PV) content in peanut kernel was studied by Fourier transform near-infrared spectroscopy (FTNIR) in the diffuse reflectance mode along with chemometric technic. The moisture, fat and protein of fresh and damaged seeds of peanuts ranging from 3 to 9 %, 45 to 57 % and 23 to 27 % respectively, were used for the calibration model building based on partial least squares (PLS) regression. The peanut samples had major peaks at wavenumbers 53.0853, 4954.98, 4464.03, 4070.85, 74.75.63, 8230.21, and 6178.13 in per cm. First and second derivate mathematical preprocessing was also applied in order to eliminate multiple baselines for different chemical quality parameters of peanut. The FFA had the lowest value of calibration and validation errors (0.579 and 0.738) followed by the protein (0.736 and 0.765). The quality of peanut seeds with lowest root mean square error of cross validation of 0.76 and maximum correlation coefficient (R2) of 96.8 was obtained. The comprehensive results signify that FT-NIR spectroscopy can be used for rapid, non-destructive quantification of quality parameters in peanuts.


2021 ◽  
Vol 887 ◽  
pp. 586-590
Author(s):  
R.A. Platova ◽  
V.A. Rassulov ◽  
Y.T. Platov

It is introduced to use a portable spectrometer along with a calibration model for rapid quality control of metakaolin in situ. Verification of the calibration model for predicting the values of two indicators: total acid solubility and mass loss during calcination, indirectly characterizing the pozzolanic activity of metakaolin.


Sign in / Sign up

Export Citation Format

Share Document