scholarly journals Numerical investigation of particle cloud sedimentation in power-law shear-thinning fluids for moderate Reynolds number

2021 ◽  
pp. 117066
Author(s):  
Junwei Guo ◽  
Qi Zhou ◽  
Ron Chik-Kwong Wong
Author(s):  
Akhilesh K. Sahu ◽  
Raj P. Chhabra ◽  
V. Eswaran

The two-dimensional and unsteady flow of power-law fluids past a long square cylinder has been investigated numerically in the range of conditions 60 ≤ Re ≤ 160 and 0.5 ≤ n ≤ 2.0. Over this range of Reynolds numbers, the flow is periodic in time for Newtonian fluids. However, no such information is available for power law fluids. A semi-explicit finite volume method has been used on a non-uniform collocated grid arrangement to solve the governing equations. The macroscopic quantities such as drag coefficients, Strouhal number, lift coefficient as well as the detailed kinematic variables like stream function, vorticity and so on, have been calculated as functions of the pertinent dimension-less groups. In particular, the effects of Reynolds number and of the power-law index have been investigated in the unsteady laminar flow regime. The leading edge separation in shear-thinning fluids produces an increase in drag values with the increasing Reynolds number, while shear-thickening behaviour delays the leading edge separation. So, the drag coefficient in the above-mentioned range of Reynolds number, Re, in shear-thinning fluids (n < 1) initially decreases but at high values of the Reynolds number, it increases. As expected, on the other hand, in case of shear-thickening fluids (n > 1) drag coefficient reduces with Reynolds number, Re. Furthermore, the present results also suggest the transition from steady to unsteady flow conditions to occur at lower Reynolds numbers in shear-thickening fluids than that in Newtonian fluids. Also, the spectra of lift signal for shear-thickening fluids show that the flow is truly periodic in nature with a single dominant frequency in the above range of Reynolds number. In shear-thinning fluids at higher Re, quasi-periodicity sets in with additional frequencies, which indicate the transition from the 2-D to 3-D flows.


2018 ◽  
Vol 25 (4) ◽  
pp. 805-811 ◽  
Author(s):  
Shao-bai Li ◽  
Jun-geng Fan ◽  
Run-dong Li ◽  
Lei Wang ◽  
Jing-de Luan

2014 ◽  
Vol 751 ◽  
pp. 184-215
Author(s):  
Liyan Yu ◽  
John Hinch

AbstractWe study the solitary wave solutions in a thin film of a power-law fluid coating a vertical fibre. Different behaviours are observed for shear-thickening and shear-thinning fluids. For shear-thickening fluids, the solitary waves are larger and faster when the reduced Bond number is smaller. For shear-thinning fluids, two branches of solutions exist for a certain range of the Bond number, where the solitary waves are larger and faster on one and smaller and slower on the other as the Bond number decreases. We carry out an asymptotic analysis for the large and fast-travelling solitary waves to explain how their speeds and amplitudes change with the Bond number. The analysis is then extended to examine the stability of the two branches of solutions for the shear-thinning fluids.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245775
Author(s):  
Samar A. Mahrous ◽  
Nor Azwadi Che Sidik ◽  
Khalid M. Saqr

The complex physics and biology underlying intracranial hemodynamics are yet to be fully revealed. A fully resolved direct numerical simulation (DNS) study has been performed to identify the intrinsic flow dynamics in an idealized carotid bifurcation model. To shed the light on the significance of considering blood shear-thinning properties, the power-law model is compared to the commonly used Newtonian viscosity hypothesis. We scrutinize the kinetic energy cascade (KEC) rates in the Fourier domain and the vortex structure of both fluid models and examine the impact of the power-law viscosity model. The flow intrinsically contains coherent structures which has frequencies corresponding to the boundary frequency, which could be associated with the regulation of endothelial cells. From the proposed comparative study, it is found that KEC rates and the vortex-identification are significantly influenced by the shear-thinning blood properties. Conclusively, from the obtained results, it is found that neglecting the non-Newtonian behavior could lead to underestimation of the hemodynamic parameters at low Reynolds number and overestimation of the hemodynamic parameters by increasing the Reynolds number. In addition, we provide physical insight and discussion onto the hemodynamics associated with endothelial dysfunction which plays significant role in the pathogenesis of intracranial aneurysms.


CALCOLO ◽  
2021 ◽  
Vol 59 (1) ◽  
Author(s):  
Pascal Heid ◽  
Endre Süli

AbstractWe explore the convergence rate of the Kačanov iteration scheme for different models of shear-thinning fluids, including Carreau and power-law type explicit quasi-Newtonian constitutive laws. It is shown that the energy difference contracts along the sequence generated by the iteration. In addition, an a posteriori computable contraction factor is proposed, which improves, on finite-dimensional Galerkin spaces, previously derived bounds on the contraction factor in the context of the power-law model. Significantly, this factor is shown to be independent of the choice of the cut-off parameters whose use was proposed in the literature for the Kačanov iteration applied to the power-law model. Our analytical findings are confirmed by a series of numerical experiments.


2014 ◽  
Vol 748 ◽  
pp. 580-617 ◽  
Author(s):  
Roger E. Khayat

AbstractThe jet flow of a shear-thinning power-law fluid is examined theoretically as it emerges from a channel at moderate Reynolds number. Poiseuille flow conditions are assumed to prevail far upstream from the exit. The problem is solved using the method of matched asymptotic expansions. A similarity solution is obtained in the inner layer near the free surface, with the outer layer extending to the jet centreline. An inner thin viscous sublayer is introduced to smooth out the singularity in viscosity at the free surface, allowing the inner algebraically decaying solutions to be matched smoothly with the solution near the free surface. A Newtonian jet is found to contract more than a shear-thinning jet. While both the inner-layer thickness and the free-surface height are $O(\mathit{Re}^{-1/3})$, and grow with downstream distance, the sublayer thickness is smaller, $O(\mathit{Re}^{-(1+n)/3})$, growing with distance for $n < 0.5$, and decaying for $n > 0.5$. The relaxation downstream distance for the jet is found to grow logarithmically with $\mathit{Re}$.


Author(s):  
Khaled J. Hammad

The impact of inflow conditions on the flow structure and evolution characteristics of annular flows of Newtonian and shear-thinning fluids through a sudden pipe expansion are studied. Numerical solutions to the elliptic form of the governing equations along with the power-law constitutive equation were obtained using a finite-difference scheme. A parametric study is performed to reveal the influence of inflow velocity profiles, annular diameter ratio, k, and power-law index, n, over the following range of parameters: inflow velocity profile = {fully-developed, uniform}, k = {0, 0.5, 0.7} and n = {1, 0.8, 0.6}. Flow separation and entrainment, downstream of the expansion plane, creates central and a much larger outer recirculation regions. The results demonstrate the influence of inflow conditions, annular diameter ratio, and rheology on the extent and intensity of both flow recirculation regions, the wall shear stress distribution, and the evolution and redevelopment characteristics of the flow downstream the expansion plane. Fully-developed inflows result in larger reattachment and redevelopment lengths as well as more intense recirculation, within the central and corner regions, in comparison with uniform inflow conditions.


1997 ◽  
Vol 32 (1) ◽  
pp. 187-199 ◽  
Author(s):  
S.J. Chapman ◽  
A.D. Fitt ◽  
C.P. Please

2014 ◽  
Vol 747 ◽  
pp. 460-480 ◽  
Author(s):  
M. Pradas ◽  
D. Tseluiko ◽  
C. Ruyer-Quil ◽  
S. Kalliadasis

AbstractWe examine the stability, dynamics and interactions of solitary waves in a two-dimensional vertically falling thin liquid film that exhibits shear-thinning effects. We use a low-dimensional two-field model that describes the evolution of both the local flow rate and the film thickness and is consistent up to second-order terms in the long-wave expansion. The shear-thinning behaviour is modelled via a power-law formulation with a Newtonian plateau in the limit of small strain rates. Our results show the emergence of a hysteresis behaviour as the control parameter (the Reynolds number) is increased which is directly related to the shear-thinning character of the liquid and can be quantified with both linear analysis arguments and a physical interpretation. We also study pulse interactions, observing that two pulses may attract or repel each other either monotonically or in an oscillatory manner. In large domains we find that for a given Reynolds number the final state depends on the initial condition, a consequence of the presence of multiple solutions.


Sign in / Sign up

Export Citation Format

Share Document