Soliton solutions of the (2+1)-dimensional Harry Dym equation via Darboux transformation

2008 ◽  
Vol 36 (3) ◽  
pp. 646-653 ◽  
Author(s):  
A.A. Halim
2003 ◽  
Vol 2003 (49) ◽  
pp. 3123-3142 ◽  
Author(s):  
A. A. Yurova ◽  
A. V. Yurov ◽  
M. Rudnev

We study discrete isospectral symmetries for the classical acoustic spectral problem in spatial dimensions one and two by developing a Darboux (Moutard) transformation formalism for this problem. The procedure follows steps similar to those for the Schrödinger operator. However, there is no one-to-one correspondence between the two problems. The technique developed enables one to construct new families of integrable potentials for the acoustic problem, in addition to those already known. The acoustic problem produces a nonlinear Harry Dym PDE. Using the technique, we reproduce a pair of simple soliton solutions of this equation. These solutions are further used to construct a new positon solution for this PDE. Furthermore, using the dressing-chain approach, we build a modified Harry Dym equation together with its LA pair. As an application, we construct some singular and nonsingular integrable potentials (dielectric permitivity) for the Maxwell equations in a 2D inhomogeneous medium.


2020 ◽  
Vol 12 (4) ◽  
pp. 50-59
Author(s):  
Ruslan Matviichuk

The Harry Dym equation is the third-order evolutionary partial differential equation. It describes a system in which dispersion and nonlinearity are coupled together. It is a completely integrable nonlinear evolution equation that may be solved by means of the inverse scattering transform. It has an infinite number of conservation laws and does not have the Painleve property. The Harry Dym equation has strong links to the Korteweg – de Vries equation and it also has many properties of soliton solutions. A connection was established between this equation and the hierarchies of the Kadomtsev – Petviashvili equation. The Harry Dym equation has applications in acoustics: with its help, finite-gap densities of the acoustic operator are constructed. The paper considers a generalization of the Harry Dym equation, for the study of which the methods of the theory of finite-dimensional dynamics are applied. The theory of finite-dimensional dynamics is a natural development of the theory of dynamical systems. Dynamics make it possible to find families that depends on a finite number of parameters among all solutions of evolutionary differential equations. In our case, this approach allows us to obtain some classes of exact solutions of the generalized equation, and also indicates a method for numerically constructing solutions.


Author(s):  
Zhiguo Xu

Starting from a more generalized discrete [Formula: see text] matrix spectral problem and using the Tu scheme, some integrable lattice hierarchies (ILHs) are presented which include the well-known relativistic Toda lattice hierarchy and some new three-field ILHs. Taking one of the hierarchies as example, the corresponding Hamiltonian structure is constructed and the Liouville integrability is illustrated. For the first nontrivial lattice equation in the hierarchy, the [Formula: see text]-fold Darboux transformation (DT) of the system is established basing on its Lax pair. By using the obtained DT, we generate the discrete [Formula: see text]-soliton solutions in determinant form and plot their figures with proper parameters, from which we get some interesting soliton structures such as kink and anti-bell-shaped two-soliton, kink and anti-kink-shaped two-soliton and so on. These soliton solutions are much stable during the propagation, the solitary waves pass through without change of shapes, amplitudes, wave-lengths and directions. Finally, we derive infinitely many conservation laws of the system and give the corresponding conserved density and associated flux formulaically.


2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Y Hanif ◽  
U Saleem

Abstract We study the discrete Darboux transformation and construct multi-soliton solutions in terms of the ratio of determinants for the integrable discrete sine-Gordon equation. We also calculate explicit expressions of single-, double-, triple-, and quadruple-soliton solutions as well as single- and double-breather solutions of the discrete sine-Gordon equation. The dynamical features of discrete kinks and breathers are also illustrated.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Masashi Hamanaka ◽  
Shan-Chi Huang

Abstract We study exact soliton solutions of anti-self-dual Yang-Mills equations for G = GL(2) in four-dimensional spaces with the Euclidean, Minkowski and Ultrahyperbolic signatures and construct special kinds of one-soliton solutions whose action density TrFμνFμν can be real-valued. These solitons are shown to be new type of domain walls in four dimension by explicit calculation of the real-valued action density. Our results are successful applications of the Darboux transformation developed by Nimmo, Gilson and Ohta. More surprisingly, integration of these action densities over the four-dimensional spaces are suggested to be not infinity but zero. Furthermore, whether gauge group G = U(2) can be realized on our solition solutions or not is also discussed on each real space.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1987
Author(s):  
Haifeng Wang ◽  
Yufeng Zhang

The Frobenius KDV equation and the Frobenius KP equation are introduced, and the Frobenius Kompaneets equation, Frobenius Burgers equation and Frobenius Harry Dym equation are constructed by taking values in a commutative subalgebra Z2ε in the paper. The five equations are selected as examples to help us study the self-adjointness of Frobenius type equations, and we show that the first two equations are quasi self-adjoint and the last three equations are nonlinear self-adjointness. It follows that we give the symmetries of the Frobenius KDV and the Frobenius KP equation in order to construct the corresponding conservation laws.


Sign in / Sign up

Export Citation Format

Share Document