scholarly journals A novel theorem on motion stability

2021 ◽  
Vol 153 ◽  
pp. 111526
Author(s):  
A.R. Tavakolpour-Saleh
Keyword(s):  
Author(s):  
V. E. Perekutnev ◽  
V. V. Zotov

Operation of inhaul rubber steel cables in vertical mine hoisting is discussed. The research in the field of mine hoisting is reviewed, and the further R&D directions are identified. Some studies concern life extension of hoisting ropes. One of the promising trends seems to be application of belt pullers as inhaul cables, which can essentially enhance mine hoist efficiency. In the meanwhile, capabilities of rubber steel cables suffer from deficient attention. The performance capabilities of rubber steel cables of top manufacturers (Promkanat and SAG) are compared, and application ranges in vertical mine hoisting are determined for such cables. It is found that the Polish manufacturer’s rubber steel cables offer a wider range of application. The analysis shows that rubber steel cables can be used as inhaul cables of vertical mine hoisters. Rubber steel cables possess suitable characteristics and are capable to elevate considerable loads to various hoisting heights. In particular, the existing rubber steel cables ensure carrying capacity of hoists up to 20-25 t at the hoisting heights to 400-500 m and sometimes can elevate skips with tonnage of 10 t to a height up to 1000 m and more. The further feasibility study of operation of inhaul steel rubber cables in hoisting units should address motion stability of a puller on a driving drum, load distribution in ropes of base of rubber steel cables, validation of hoister design, adjustability of rubber steel cable length during its operation, etc.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 86
Author(s):  
Tao Wang ◽  
Zhuo Wang ◽  
Bo Zhang

In order to clean underwater silt in artificially constructed rivers, lakes, and fish ponds, for which no suitable tool exists, a tool has been developed that imitates the structure and movement of the tortoise’s legs, and designs a four-legged dredging robot that can adapt to the complex underwater environment. The article uses the transformation matrix to analyze the kinematics of the dredging robot, determines the movement sequence of the outriggers according to the principle of stability, and analyzes the movement characteristics of the three gait modes. Then, we combined the control function of the foot trajectory with the experimental prototype based on the bionic tortoise mechanism to carry out a walking experiment. During the experiment, the motion stability is good. Additionally, the changes in the position, the posture of the outriggers, and the body prove that the movement stability of the dredging robot using coordinated gait, mixed gait, and intermittent gait has increased sequentially.


Author(s):  
Shuming Shi ◽  
Fanyu Meng ◽  
Minghui Bai ◽  
Nan Lin

The Lyapunov exponents method is an excellent approach for analyzing the vehicle plane motion stability, and the researchers demonstrated the effectiveness under 2-DOF vehicle model. However, whether the Lyapunov exponents approach can effectively reveal the characteristics of high-DOF nonlinear vehicle model is the key problem at present. In this paper, the Lyapunov exponents is applied to quantitatively analyze the stability of the nonlinear three and five degree of freedom vehicle plane motion system. The different characteristics between 2-DOF and high-DOF model are revealed and explained by using Lyapunov exponents. It illustrates the feasibility of using Lyapunov exponents to analyze the stability of high-DOF vehicle models, which supplements and perfects the existing quantitative analysis conclusion.


2021 ◽  
pp. 61-64
Author(s):  

A new solution is proposed for sawing machines with circular translational motion of the saw blades, which eliminates the effect of lateral force on the saw blade. These design solutions increase the accuracy of the resulting lumber, processing productivity, equipment life and reduce energy consumption. Keywords: sawing machine, saw blade, circular forward motion, stability, negative feedback. [email protected], tel. 8 (915)-301-78-74


2021 ◽  
Author(s):  
Olena Kuzmych ◽  
Nataliia Cherniashchuk ◽  
Nataliia Lishchyna ◽  
Valeriy Lishchyna ◽  
Oksana Mekush ◽  
...  

2014 ◽  
Vol 620 ◽  
pp. 321-329
Author(s):  
Guang Rui Liu ◽  
Wen Bo Zhou ◽  
Rong Fu Liu

In order to study the elastic motion stability of flexible manipulator arm , to compute the maximum dynamic allowable payload , the partial differential equation of elastic motion of the flexible manipulator arm is solved using the method of Laplace transformation , the dynamic model of flexible manipulator arm carried addition mass on its end position is established ,simplified and truncated using Lagrange equation . the state space expression is established with the state variable and control input and output variable designated , the elastic motion stability rule is built upon and simplified using Lyapunov stability theory . The influence of the end position addition mass and articulation rotational inertia of flexible manipulator arm on its elastic motion stability is analyzed using the stability rule , and the dynamic maximum allowable payload of flexible manipulator arm on its end position is computed in order to guarantee its elastic motion stability . this study is important to the design of robot mechanical manipulator and corresponding drive control system .


Sign in / Sign up

Export Citation Format

Share Document