Corrigendum to “Interpretations and implications of LA ICP-MS analysis of chert for the origin of geochemical signatures in banded iron formations (BIFs) from the Meadowbank gold deposit, Western Churchill Province, Nunavut”

2017 ◽  
Vol 449 ◽  
pp. 270
Author(s):  
B. Gourcerol ◽  
P.C. Thurston ◽  
D.J. Kontak ◽  
O. Côté-Mantha
2014 ◽  
Vol 6 (15) ◽  
pp. 6125-6132 ◽  
Author(s):  
Wenjun Li ◽  
Xindi Jin ◽  
Bingyu Gao ◽  
Changle Wang ◽  
Lianchang Zhang

Comparison between the REE data of this work and literature values by Z. S. Yu et al., Sampaio et al., Dulski et al., and Bau et al. in reference materials FER-2 (a) and FER-3 (b) using PAAS-normalized REE patterns.


2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


Author(s):  
Blandine Gourcerol ◽  
◽  
Daniel J. Kontak ◽  
Phillips C. Thurston ◽  
Joseph A. Petrus
Keyword(s):  

2020 ◽  
Vol 1099 ◽  
pp. 16-25 ◽  
Author(s):  
Daniel Rosenkranz ◽  
Fabian L. Kriegel ◽  
Emmanouil Mavrakis ◽  
Spiros A. Pergantis ◽  
Philipp Reichardt ◽  
...  

Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 77
Author(s):  
Davide Spanu ◽  
Gilberto Binda ◽  
Marcello Marelli ◽  
Laura Rampazzi ◽  
Sandro Recchia ◽  
...  

A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).


2010 ◽  
Vol 398 (1) ◽  
pp. 415-424 ◽  
Author(s):  
T. Stehrer ◽  
J. Heitz ◽  
J. D. Pedarnig ◽  
N. Huber ◽  
B. Aeschlimann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document