Beryllium isotopic systematics in island arc volcanic rocks from northeast Japan: Implications for the incorporation of oceanic sediments into island arc magmas

2016 ◽  
Vol 443 ◽  
pp. 158-172 ◽  
Author(s):  
Akiko Shimaoka ◽  
Mineo Imamura ◽  
Ichiro Kaneoka
Lithos ◽  
2017 ◽  
Vol 290-291 ◽  
pp. 228-252 ◽  
Author(s):  
Yamirka Rojas-Agramonte ◽  
Ian S. Williams ◽  
Richard Arculus ◽  
Alfred Kröner ◽  
Antonio García-Casco ◽  
...  

Author(s):  
A.I. Malinovsky ◽  
◽  
V.V. Golozubov ◽  

This paper studies the original results of the material composition analysis of the Early Silurian terrigenous deposits of the Kordonka formation of the Paleozoic – Early Mesozoic Laoeling-Grodekovo terrane of the South Primorye. The research is aimed at reconstructing paleogeodynamic setting of the deposition of sediments of the formation, and determining the type and mother rock composition of the feed sources based on the complex genetic interpretation of the material composition of rocks. It was established that mineralogically and geochemically formation of the rocks correspond to the typical graywackes and represent petrogenic or “first cycle” rocks formed mainly through the source rock failure. They are characterized by a low maturity, low lithodynamic recycling rate of mother rocks and their rapid burial. The interpretation of the results of the complex study of the material composition of the rocks was carried out on the basis of its comparison with the compositions of ancient rocks and modern sediments formed in the well-known geodynamic settings. The obtained data indicate that deposits of the Kordonka formation accumulated in a sedimentary basin connected with an oceanic island arc. Being built by basic and intermediate volcanic rocks as well as by igneous and sedimentary rocks that constituted its base, this island arc was the source area that supplied clastic material to the aforementioned sedimentary basin.


2019 ◽  
Vol 27 (1) ◽  
pp. 57-78
Author(s):  
D. V. Alexeiev ◽  
Yu. S. Biske ◽  
A. V. Djenchuraeva ◽  
B. Wang ◽  
O. L. Kossovaya ◽  
...  

The field revision of the Carboniferous and Lower Permian stratigraphy of the northern Bogdashan (South Junggar, Northwest China) shows that the Lower to Middle Carboniferous island arc volcanic rocks, widely developed in this region, are overlapped everywhere by carbonate and terrigenous-carbonate sediments, containing occasional lava flows and overlain up the section by thick terrigenous series practically devoid of volcanic rocks. The deposition of limestone occurred at the stage of dying off of a volcanic arc, and the question of their age is of fundamental importance for dating this event. Carbonates are represented by facies of lagoons, shoals, and bioherms that formed on the leveled surface of the arc and on the slopes of the last active volcanoes. Bioherms are Waulsortian mounds and are mainly composed of algal limestones and carbonate mud. There are no framestones composed of corals and sponges (chaetetids) typical of the tropical zone. The facies of shallow crinoid-fusulinid limestones typical of the adjacent territories of the Southern Tien Shan and Tarim are poorly represented. Paleogeographically, the position of bioherms corresponds to the northern boundary of the realm of Pennsylvanian reefs. On the basis of foraminifers, brachiopods, and corals, the age of carbonates is early Moscovian (ca. 315–310 Ma). Cessation of island-arc volcanism, followed by the accumulation of limestone in Bogdashan, occurred sub-synchronously with formation of the West Junggar (Bayingou) suture and may reflect docking of the Bogdashan arc to the Yili active margin of the Kazakhstan continent. Further subsidence of Bogdashan and adjacent regions of the Junggar and Turfan basins, which was somewhat slower at the end of the Carboniferous and more intense in the Early and Middle Permian, may reflect the development of the foreland basin that formed along the northern flank of the Tien Shan orogen. Marine facies were locally preserved in this basin until the Artinskian (ca. 285 Ma), and later the Junggar and Turfan basins lost connection to the ocean and developed in continental environments.


2004 ◽  
Vol 175 (5) ◽  
pp. 443-460 ◽  
Author(s):  
Rodolfo A. Tamayo* ◽  
René C. Maury* ◽  
Graciano P. Yumul ◽  
Mireille Polvé ◽  
Joseph Cotten ◽  
...  

Abstract The basement complexes of the Philippine archipelago include at least 20 ophiolites and ophiolitic complexes. These complexes are characterised by volcanic sequences displaying geochemical compositions similar to those observed in MORB, transitional MORB-island arc tholeiites and arc volcanic rocks originating from modern Pacific-type oceans, back-arc basins and island arcs. Ocean island basalt-like rocks are rarely encountered in the volcanic sequences. The gabbros from the ophiolites contain clinopyroxenes and plagioclases showing a wide range of XMg and An values, respectively. Some of these gabbros exhibit mineral chemistries suggesting their derivation from basaltic liquids formed from mantle sources that underwent either high degrees of partial melting or several partial melting episodes. Moreover, some of the gabbros display a crystallization sequence where orthopyroxene and clinopyroxene appeared before plagioclase. The major element compositions of coexisting orthopyroxenes and olivines from the mantle peridotites are consistent with low to high degrees of partial melting. Accessory spinels in these peridotites display a wide range of XCr values as well with some of them above the empirical upper limit of 0.6 often observed in most modern mid-oceanic ridge (MOR) mantle rocks. Co-existing olivines and spinels from the peridotites also exhibit compositions suggesting that they lastly equilibrated under oxidizing mantle conditions. The juxtaposition of volcanic rocks showing affinities with modern MOR and island arc environments suggests that most of the volcanic sequences in Philippine ophiolites formed in subduction-related geodynamic settings. Similarly, their associated gabbros and peridotites display mineralogical characteristics and mineral chemistries consistent with their derivation from modern supra-subduction zone-like environments. Alternatively, these rocks could have, in part, evolved in a supra-subduction zone even though they originated from a MOR-like setting. A simplified scenario regarding the early geodynamic evolution of the Philippines is proposed on the basis of the geochemical signatures of the ophiolites, their ages of formation and the ages and origins of the oceanic basins actually bounding the archipelago, including basins presumed to be now totally consumed. This scenario envisages the early development of the archipelago to be largely dominated by the opening and closing of oceanic basins. Fragments of these basins provided the substratum on top of which the Cretaceous to Recent volcanic arcs of the Philippines were emplaced.


Geology ◽  
2020 ◽  
Vol 48 (4) ◽  
pp. 323-327 ◽  
Author(s):  
Chetan L. Nathwani ◽  
Matthew A. Loader ◽  
Jamie J. Wilkinson ◽  
Yannick Buret ◽  
Robert H. Sievwright ◽  
...  

Abstract Protracted magma storage in the deep crust is a key stage in the formation of evolved, hydrous arc magmas that can result in explosive volcanism and the formation of economically valuable magmatic-hydrothermal ore deposits. High magmatic water content in the deep crust results in extensive amphibole ± garnet fractionation and the suppression of plagioclase crystallization as recorded by elevated Sr/Y ratios and high Eu (high Eu/Eu*) in the melt. Here, we use a novel approach to track the petrogenesis of arc magmas using apatite trace element chemistry in volcanic formations from the Cenozoic arc of central Chile. These rocks formed in a magmatic cycle that culminated in high-Sr/Y magmatism and porphyry ore deposit formation in the Miocene. We use Sr/Y, Eu/Eu*, and Mg in apatite to track discrete stages of arc magma evolution. We apply fractional crystallization modeling to show that early-crystallizing apatite can inherit a high-Sr/Y and high-Eu/Eu* melt chemistry signature that is predetermined by amphibole-dominated fractional crystallization in the lower crust. Our modeling shows that crystallization of the in situ host-rock mineral assemblage in the shallow crust causes competition for trace elements in the melt that leads to apatite compositions diverging from bulk-magma chemistry. Understanding this decoupling behavior is important for the use of apatite as an indicator of metallogenic fertility in arcs and for interpretation of provenance in detrital studies.


Sign in / Sign up

Export Citation Format

Share Document