Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system

Chemosphere ◽  
2016 ◽  
Vol 155 ◽  
pp. 217-224 ◽  
Author(s):  
Yawei Xie ◽  
Lujun Chen ◽  
Rui Liu
ChemSusChem ◽  
2016 ◽  
Vol 9 (10) ◽  
pp. 1194-1199 ◽  
Author(s):  
Chen-Yu Chen ◽  
Cheng Tang ◽  
Hao-Fan Wang ◽  
Cheng-Meng Chen ◽  
Xiaoyuan Zhang ◽  
...  

2012 ◽  
Vol 610-613 ◽  
pp. 1426-1431 ◽  
Author(s):  
Yuan Hong Ding ◽  
Qing Wang ◽  
Hong Qiang Ren

a submerged membrane bioreactor was used to treat the effluent of a pharmaceutical wastewater treatment system, the treated water is rich in ammonia nitrogen and organic compounds (NH4-N, averaged in 78.1 mg/L; COD, averaged in 189.5 mg/L), the final effluent of membrane bioreactor was stably below 50 mg/L COD and 40 mg/L NH4-N respectively, the activity of nitrifying bacteria was inhibited by high concentrations of organic compounds and ammonia nitrogen, a rapid declination of filtration was probably resulted form high concentrations of organic compounds and biomass.


2006 ◽  
Vol 54 (2) ◽  
pp. 157-163 ◽  
Author(s):  
P.M. Nacheva ◽  
B. Peña-Loera ◽  
F. Moralez-Guzmán

Biological degradation in packed bed anaerobic mesophilic reactors with five different support materials was studied for the treatment of chemical-pharmaceutical wastewater with high COD (23–31 g/L), which contains toxic organic compounds. Experimental up-flow bio-filters were operated at different organic loads for a two-year period. Removals of 80–98% were obtained in the reactors with sand, anthracite and black tezontle, but at relatively low organic loads, less than 3.6 kg m−3 d−1. The reactor with granular activated carbon (GAC) had a better performance; efficiencies higher than 95% were obtained at loads up to 17 kg m−3 d−1 and higher than 80% with loads up to 26 kg m−3 d−1. Second in performance was the reactor with red tezontle which allows COD removals higher than 80% with loads up to 6 kg m−3 d−1. The use of GAC as support material allows greater biodegradation rates than the rest of the materials and it makes the process more resistant to organic load increases, inhibition effects and toxicity. Methanogenic activity was inhibited at loads higher than 21.9 kg m−3 d−1 in the GAC-reactor and at loads higher than 3.6 kg m−3 d−1 in the rest of the reactors. At loads lower than the previously mentioned, high methane production yield was obtained, 0.32–0.35 m3CH4/kg CODremoved.


2022 ◽  
Vol 429 ◽  
pp. 132176
Author(s):  
Yingshi Zhu ◽  
Fengxia Deng ◽  
Shan Qiu ◽  
Fang Ma ◽  
Yanshi Zheng ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Qiao Luo ◽  
Jing Wang ◽  
JianHui Wang ◽  
Yu Shen ◽  
Peng Yan ◽  
...  

The chemical composition, distribution, and fate of pharmaceutically active compounds (PhACs) present in typical pharmaceutical wastewater treatment plants were investigated with the aim of effectively removing these pollutants while minimizing waste of resources and energy. The results of this study indicate that the relative content of an organic compound class is unrelated to the number of organic compounds in the influent and effluent, yet it is directly proportional to the pollution contribution in pharmaceutical wastewater. In wastewater influent, the organic compound classes with the highest relative contents and pollution contributions were acids (relative content = 63.65%, contribution to pollution = 67.22%), esters (44.96%, 41.24%), and heterocyclic compounds (30.24%, 35.23%); in wastewater effluent, these classes were organic acids (62.54%, 65.13%), esters (52.66%, 59.02%), and organosilicon compounds (42.46%, 37.45%). The different physicochemical characteristics of these pollutants result in different removal efficiencies. For example, N,N-dimethylformamide, 4-methyloctane, N-ethylmorpholine, and 4-amino-N,N- and N,N-diethylbenzamide are refractory and are not degraded by microorganisms; thus, these compounds are discharged into the aquatic environment. Other organic compound classes including organosilicon compounds, acids, esters, heterocycles, and alcohols are mostly biodegraded, which leads to high concentrations of hydrocarbons in the wastewater effluent. The results of this study provide a foundation for the improvement of pharmaceutical wastewater treatment.


2020 ◽  
Vol 14 (2) ◽  
pp. 280-286
Author(s):  
Ming Lei ◽  
Qingtong Zhang ◽  
Douyong Min ◽  
Shuangfei Wang

In this study, the effects of four main factors on the removal of absorbable organic halogens were evaluated by response surface methodology, and the changes of absorbable organic halogens components were characterized by gas chromatography-mass spectrometer during the Fenton reaction. The high regression coefficient (R2 = 0.9028) and the low coefficient of variation (7.45%) indicated that the model was accurate in predicting the experimental results. The optimized pH, Fe2+ concentration, molar ratio of H2O2/Fe2+ and reaction time were respectively 3.4, 16.3 mM, 22.5 and 1.2 h. Consequently, 93.8% of absorbable organic halogens were removed under the optimized condition. The initial pH is the most important factor impacting the absorbable organic halogens removal. Furthermore, gas chromatography-mass spectrometer revealed that 25 out of 28 organic compounds including 7 absorbable organic halogens were thoroughly removed. Conclusively, Fenton reaction can effectively remove absorbable organic halogens from the simulated bleaching effluent.


2015 ◽  
Vol 13 (2) ◽  
pp. 377-386 ◽  
Author(s):  
Laís O. Ferreira ◽  
Ana C. C. Lemos ◽  
Francisco G. E. Nogueira ◽  
Iara R. Guimaraes ◽  
Mario C. Guerreiro ◽  
...  

1997 ◽  
Vol 161 ◽  
pp. 419-429 ◽  
Author(s):  
Antonio Lazcano

AbstractDifferent current ideas on the origin of life are critically examined. Comparison of the now fashionable FeS/H2S pyrite-based autotrophic theory of the origin of life with the heterotrophic viewpoint suggest that the later is still the most fertile explanation for the emergence of life. However, the theory of chemical evolution and heterotrophic origins of life requires major updating, which should include the abandonment of the idea that the appearance of life was a slow process involving billions of years. Stability of organic compounds and the genetics of bacteria suggest that the origin and early diversification of life took place in a time period of the order of 10 million years. Current evidence suggest that the abiotic synthesis of organic compounds may be a widespread phenomenon in the Galaxy and may have a deterministic nature. However, the history of the biosphere does not exhibits any obvious trend towards greater complexity or «higher» forms of life. Therefore, the role of contingency in biological evolution should not be understimated in the discussions of the possibilities of life in the Universe.


Sign in / Sign up

Export Citation Format

Share Document