scholarly journals Diffusion of organic anions in clay-rich media: Retardation and effect of anion exclusion

Chemosphere ◽  
2018 ◽  
Vol 213 ◽  
pp. 472-480 ◽  
Author(s):  
R.V.H. Dagnelie ◽  
S. Rasamimanana ◽  
V. Blin ◽  
J. Radwan ◽  
E. Thory ◽  
...  
1969 ◽  
Vol 66 ◽  
pp. 59-63 ◽  
Author(s):  
A. R. Ubbelohde ◽  
F. R. S.

Author(s):  
Rajesh Kumar Verma ◽  
Chhabi Rani Panigrahi ◽  
Bibudhendu Pati ◽  
Joy Lal Sarkar

Background & Objective: Multimedia aggregates various types of media such as audio, video, images, animations, etc., to form a rich media content which produces an everlasting effect in the minds of the people. Methods: In order to process multimedia applications using mobile devices, we encounter a big challenge as these devices have limited resources and power. To address these limitations, in this work, we have proposed an efficient approach named as mMedia, wherein multimedia applications will utilize the multi cloud environment using Mobile Cloud Computing (MCC), for faster processing. The proposed approach selects the best available network. The authors have also considered using the Lyapunov optimization technique for efficient transmission between the mobile device and the cloud. Results: The simulation results indicate that mMedia can be useful for various multimedia applications by considering the energy delay tradeoff decision. Conclusion: The results have been compared alongside the base algorithm SALSA on the basis of different parameters like time average queue backlog, delay and time average utility and indicate that the mMedia outperforms in all the aspects.


2004 ◽  
Vol 69 (5) ◽  
pp. 1137-1148 ◽  
Author(s):  
Gennady V. Oshovsky ◽  
Willem Verboom ◽  
David N. Reinhoudt

Ureidocavitand 1 and thioureidocavitand 2 bind in CH3CN organic anions such as acetate, propionate, butyrate, etc. with K values of 2-8 × 105 l mol-1 and 2-9 × 106 l mol-1, respectively, as was determined with isothermal microcalorimetry (ITC). Bringing together four (thio)urea binding sites on a molecular platform gives rise to about 2000 times higher binding constants, compared with those of the corresponding single binding sites. Glucose- and galactose-containing thioureidocavitands 5 and 6 bind acetate in 1:1 CH3CN/water with a K-value of 2.15 × 103 l mol-1.


2021 ◽  
pp. 088532822110134
Author(s):  
Sushant Singh ◽  
Udit Kumar ◽  
David Gittess ◽  
Tamil S Sakthivel ◽  
Balaashwin Babu ◽  
...  

Many studies have linked reactive oxygen species (ROS) to various diseases. Biomedical research has therefore sought a way to control and regulate ROS produced in biological systems. In recent years, cerium oxide nanoparticles (nanoceria, CNPs) have been pursued due to their ability to act as regenerative ROS scavengers. In particular, they are shown to have either superoxide dismutase (SOD) or catalase mimetic (CAT) potential depending on the ratio of Ce3+/Ce4+ valence states. Moreover, it has been demonstrated that SOD mimetic activity can be diminished by the presence of phosphate, which can be a problem given that many biological systems operate in a phosphate-rich environment. Herein, we report a CNP formulation with both SOD and catalase mimetic activity that is preserved in a phosphate-rich media. Characterization demonstrated a highly dispersed, stable solution of uniform-sized, spherical-elliptical shaped CNP of 12 ± 2 nm, as determined through dynamic light scattering, zeta potential, and transmission electron microscopy. Mixed valence states of Ce ions were observed via UV/Visible spectroscopy and XPS (Ce3+/Ce4+ > 1) (Ce3+∼ 62%). X-ray diffraction and XPS confirmed the presence of oxygen-deficient cerium oxide (CeO2-x) particles. Finally, the CNP demonstrated very good biocompatibility and efficient reduction of hydrogen peroxide under in-vitro conditions.


2021 ◽  
Vol 74 (1-3) ◽  
pp. 169-177
Author(s):  
Claude L. Mertzenich ◽  
Giannis S. Papaefstathiou ◽  
Tomislav Friščić ◽  
Tamara D. Hamilton ◽  
Dejan-Krešimir Bučar ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 96
Author(s):  
Stephen J. Dollery ◽  
Daniel V. Zurawski ◽  
Elena K. Gaidamakova ◽  
Vera Y. Matrosova ◽  
John K. Tobin ◽  
...  

Acinetobacter baumannii is a bacterial pathogen that is often multidrug-resistant (MDR) and causes a range of life-threatening illnesses, including pneumonia, septicemia, and wound infections. Some antibiotic treatments can reduce mortality if dosed early enough before an infection progresses, but there are few other treatment options when it comes to MDR-infection. Although several prophylactic strategies have been assessed, no vaccine candidates have advanced to clinical trials or have been approved. Herein, we rapidly produced protective whole-cell immunogens from planktonic and biofilm-like cultures of A. baumannii, strain AB5075 grown using a variety of methods. After selecting a panel of five cultures based on distinct protein profiles, replicative activity was extinguished by exposure to 10 kGy gamma radiation in the presence of a Deinococcus antioxidant complex composed of manganous (Mn2+) ions, a decapeptide, and orthophosphate. Mn2+ antioxidants prevent hydroxylation and carbonylation of irradiated proteins, but do not protect nucleic acids, yielding replication-deficient immunogenic A. baumannii vaccine candidates. Mice were immunized and boosted twice with 1.0 × 107 irradiated bacterial cells and then challenged intranasally with AB5075 using two mouse models. Planktonic cultures grown for 16 h in rich media and biofilm cultures grown in static cultures underneath minimal (M9) media stimulated immunity that led to 80–100% protection.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3084
Author(s):  
Hao Jing ◽  
Zhao Liu ◽  
Seng How Kuan ◽  
Sylvia Chieng ◽  
Chun Loong Ho

Recently, microbial-based iron reduction has been considered as a viable alternative to typical chemical-based treatments. The iron reduction is an important process in kaolin refining, where iron-bearing impurities in kaolin clay affects the whiteness, refractory properties, and its commercial value. In recent years, Gram-negative bacteria has been in the center stage of iron reduction research, whereas little is known about the potential use of Gram-positive bacteria to refine kaolin clay. In this study, we investigated the ferric reducing capabilities of five microbes by manipulating the microbial growth conditions. Out of the five, we discovered that Bacillus cereus and Staphylococcus aureus outperformed the other microbes under nitrogen-rich media. Through the biochemical changes and the microbial behavior, we mapped the hypothetical pathway leading to the iron reduction cellular properties, and found that the iron reduction properties of these Gram-positive bacteria rely heavily on the media composition. The media composition results in increased basification of the media that is a prerequisite for the cellular reduction of ferric ions. Further, these changes impact the formation of biofilm, suggesting that the cellular interaction for the iron(III)oxide reduction is not solely reliant on the formation of biofilms. This article reveals the potential development of Gram-positive microbes in facilitating the microbial-based removal of metal contaminants from clays or ores. Further studies to elucidate the corresponding pathways would be crucial for the further development of the field.


2009 ◽  
Vol 37 (3-4) ◽  
pp. 378-386 ◽  
Author(s):  
Luise K. Gram ◽  
Gerda Marie Rist ◽  
Hans Lennernäs ◽  
Bente Steffansen

Sign in / Sign up

Export Citation Format

Share Document