Cd accumulation, biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil

Chemosphere ◽  
2020 ◽  
Vol 242 ◽  
pp. 125128 ◽  
Author(s):  
Yixia Cai ◽  
Shihao Zhang ◽  
Kunzheng Cai ◽  
Fei Huang ◽  
Bogui Pan ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (59) ◽  
pp. 47584-47591 ◽  
Author(s):  
Yicheng Yin ◽  
Yaqin Wang ◽  
Yunguo Liu ◽  
Guangming Zeng ◽  
Xinjiang Hu ◽  
...  

A Cd-tolerant plant species named Boehmeria nivea (L.) Gaudich (ramie) was applied to study its Cd accumulation and translocation mechanisms with the addition of ethylene diamine tetracetic acid (EDTA) or nitrilotriacetic acid (NTA).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Li Chen ◽  
Dan Wang ◽  
Chan Long ◽  
Zheng-xu Cui

AbstractThis study investigated the effect of ethylenediamine-N,N′-disuccinic acid (EDDS), oxalic acid (OA), and citric acid (CA) on phytoextraction of U- and Cd-contaminated soil by Z. pendula. In this study, the biomass of tested plant inhibited significantly following treatment with the high concentration (7.5 mmol·kg−1) EDDS treatment. Maximum U and Cd concentration in the single plant was observed with the 5 mmol·kg−1 CA and 7.5 mmol·kg−1 EDDS treatment, respectively, whereas OA treatments had the lowest U and Cd uptake. The translocation factors of U and Cd reached the maximum in the 5 mmol·kg−1 EDDS. The maximum bioaccumulation of U and Cd in the single plants was 1032.14 µg and 816.87 µg following treatment with 5 mmol·kg−1 CA treatment, which was 6.60- and 1.72-fold of the control groups, respectively. Furthermore, the resultant rank order for available U and Cd content in the soil was CA > EDDS > OA (U) and EDDS > CA > OA (Cd). These results suggested that CA could greater improve the capacity of phytoextraction using Z. pendula in U- and Cd- contaminated soils.


2018 ◽  
Vol 127 ◽  
pp. 64-73 ◽  
Author(s):  
Kun Wang ◽  
Yuhui Qiao ◽  
Huiqi Zhang ◽  
Shizhong Yue ◽  
Huafen Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document