A combination of Tropilaelaps mercedesae and imidacloprid negatively affects survival, pollen consumption and midgut bacterial composition of honey bee

Chemosphere ◽  
2021 ◽  
Vol 268 ◽  
pp. 129368
Author(s):  
Shilong Ma ◽  
Yang Yang ◽  
Zhongmin Fu ◽  
Qingyun Diao ◽  
Mengyue Wang ◽  
...  
2018 ◽  
Vol 151 ◽  
pp. 131-136 ◽  
Author(s):  
Pichaya Chanpanitkitchote ◽  
Yanping Chen ◽  
Jay D. Evans ◽  
Wenfeng Li ◽  
Jianghong Li ◽  
...  

2020 ◽  
Author(s):  
Yunfei Wu ◽  
Qiushi Liu ◽  
Benjamin Weiss ◽  
Martin Kaltenpoth ◽  
Tatsuhiko Kadowaki

AbstractThe negative effects of honey bee parasitic mites and deformed wing virus (DWV) on honey bee and colony health have been well characterized. However, the relationship between DWV and mites, particularly viral replication inside the mites, remains unclear. Furthermore, the physiological outcomes of honey bee immune responses stimulated by DWV and the mite to the host (honey bee) and perhaps the pathogen/parasite (DWV/mite) are not yet understood. To answer these questions, we studied the tripartite interactions between the honey bee, Tropilaelaps mercedesae, and DWV as the model. T. mercedesae functioned as a vector for DWV without supporting active viral replication. Thus, DWV negligibly affected mite fitness. Mite infestation induced mRNA expression of antimicrobial peptides (AMPs), Defensin-1 and Hymenoptaecin, which correlated with DWV copy number in honey bee pupae and mite feeding, respectively. Feeding T. mercedesae with fruit fly S2 cells heterologously expressing honey bee Hymenoptaecin significantly downregulated mite Vitellogenin expression, indicating that the honey bee AMP manipulates mite reproduction upon feeding on bee. Our results provide insights into the mechanism of DWV transmission by the honey bee parasitic mite to the host, and the novel role of AMP in defending against mite infestation.


2018 ◽  
Author(s):  
Jing Lei ◽  
Qiushi Liu ◽  
Tatsuhiko Kadowaki

AbstractHoney bee parasitic mites (Tropilaelaps mercedesae and Varroa destructor) detect temperature, humidity, and odor but the underlying sensory mechanisms are poorly understood. To uncover how T. mercedesae responds to environmental stimuli inside a hive, we identified the sensilla-rich sensory organ on the foreleg tarsus. The organ contained four types of sensilla, which may respond to different stimuli based on their morphology. We found the forelegs were enriched with mRNAs encoding sensory proteins such as ionotropic receptors (IRs) and gustatory receptors (GRs), as well as proteins involved in ciliary transport. We also found that T. mercedesae and Drosophila melanogaster IR25a and IR93a are functionally equivalent. These results demonstrate that the structures and physiological functions of ancient IRs have been conserved during arthropod evolution. Our study provides insight into the sensory mechanisms of honey bee parasitic mites, as well as potential targets for methods to control the most serious honey bee pest.


Apidologie ◽  
2004 ◽  
Vol 35 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Dirk Babendreier ◽  
Nicole Kalberer ◽  
Jörg Romeis ◽  
Peter Fluri ◽  
Franz Bigler

2017 ◽  
Vol 96 (2) ◽  
pp. e21406 ◽  
Author(s):  
Vincent A. Ricigliano ◽  
William Fitz ◽  
Duan C. Copeland ◽  
Brendon M. Mott ◽  
Patrick Maes ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Patcharin Phokasem ◽  
Lilia I. de Guzman ◽  
Kitiphong Khongphinitbunjong ◽  
Amanda M. Frake ◽  
Panuwan Chantawannakul

Abstract Tropilaelaps mercedesae parasitism can cause Apis mellifera colony mortality in Asia. Here, we report for the first time that tropilaelaps mites feed on both pre- and post-capped stages of honey bees. Feeding on pre-capped brood may extend their survival outside capped brood cells, especially in areas where brood production is year-round. In this study, we examined the types of injury inflicted by tropilaelaps mites on different stages of honey bees, the survival of adult honey bees, and level of honey bee viruses in 4th instar larvae and prepupae. The injuries inflicted on different developing honey bee stages were visualised by staining with trypan blue. Among pre-capped stages, 4th instar larvae sustained the highest number of wounds (4.6 ± 0.5/larva) while 2nd-3rd larval instars had at least two wounds. Consequently, wounds were evident on uninfested capped brood (5th-6th instar larvae = 3.91 ± 0.64 wounds; prepupae = 5.25 ± 0.73 wounds). Tropilaelaps mite infestations resulted in 3.4- and 6-fold increases in the number of wounds in 5th-6th instar larvae and prepupae as compared to uninfested capped brood, respectively. When wound-inflicted prepupae metamorphosed to white-eyed pupae, all wound scars disappeared with the exuviae. This healing of wounds contributed to the reduction of the number of wounds (≤10) observed on the different pupal stages. Transmission of mite-borne virus such as Deformed Wing Virus (DWV) was also enhanced by mites feeding on early larval stages. DWV and Black Queen Cell Virus (BQCV) were detected in all 4th instar larvae and prepupae analysed. However, viral levels were more pronounced in scarred 4th instar larvae and infested prepupae. The remarkably high numbers of wounds and viral load on scarred or infested developing honey bees may have caused significant weight loss and extensive injuries observed on the abdomen, wings, legs, proboscis and antennae of adult honey bees. Together, the survival of infested honey bees was significantly compromised. This study demonstrates the ability of tropilaelaps mites to inflict profound damage on A. mellifera hosts. Effective management approaches need to be developed to mitigate tropilaelaps mite problems.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Megan E. Damico ◽  
Olav Rueppell ◽  
Zack Shaffer ◽  
Bin Han ◽  
Kasie Raymann

Abstract Background Honey bees are not only essential for pollination services, but are also economically important as a source of hive products (e.g., honey, royal jelly, pollen, wax, and propolis) that are used as foods, cosmetics, and alternative medicines. Royal jelly is a popular honey bee product with multiple potential medicinal properties. To boost royal jelly production, a long-term genetic selection program of Italian honey bees (ITBs) in China has been performed, resulting in honey bee stocks (here referred to as RJBs) that produce an order of magnitude more royal jelly than ITBs. Although multiple studies have investigated the molecular basis of increased royal jelly yields, one factor that has not been considered is the role of honey bee-associated gut microbes. Results Based on the behavioral, morphological, physiological, and neurological differences between RJBs and ITBs, we predicted that the gut microbiome composition of RJBs bees would differ from ITBs. To test this hypothesis, we investigated the bacterial composition of RJB and ITB workers from an urban location and RJBs from a rural location in China. Based on 16S rRNA gene profiling, we did not find any evidence that RJBs possess a unique bacterial gut community when compared to ITBs. However, we observed differences between honey bees from the urban versus rural sites. Conclusions Our results suggest that the environmental factors rather than stock differences are more important in shaping the bacterial composition in honey bee guts. Further studies are needed to investigate if the observed differences in relative abundance of taxa between the urban and rural bees correspond to distinct functional capabilities that impact honey bee health. Because the lifestyle, diet, and other environmental variables are different in rural and urban areas, controlled studies are needed to determine which of these factors are responsible for the observed differences in gut bacterial composition between urban and rural honeybees.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 510
Author(s):  
Monica Shrestha ◽  
Jakob Wegener ◽  
Ishan Gautam ◽  
Madhusudan Singh ◽  
Christoph Schwekendiek ◽  
...  

The mites Varroa destructor Anderson and Trueman and Tropilaelaps mercedesae Anderson and Morgan are both serious threats to the Apis mellifera beekeeping industry. A trait frequently used in selection programs for V. destructor resistance is hygienic behavior, the selective removal of diseased/damaged brood. Here, we measured the level of association of the expression of hygienic behavior against both mites in A. mellifera, by observing whether the same individual bees would carry out the opening and removal of brood infested by the two parasites. The groups of bees showing these behaviors on cells artificially infested by either parasite showed a large overlap, making it appear likely that the two traits are at least closely coupled. Therefore, breeding for V. destructor resistance based on hygienic behavior could prepare A. mellifera populations for dealing with Tropilaelaps sp. mites, and vice versa. Using the same bioassay, we also compared the hygienic behavior of A. mellifera towards T. mercedesae to that of the Asiatic honey bee, Apis cerana. A. cerana workers eliminated a greater proportion of infested cells, which may in part explain the resistance of this bee to Tropilaelaps and the observation that Tropilaelaps reproduction on brood of this species is extremely rare.


Sign in / Sign up

Export Citation Format

Share Document