scholarly journals Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae

2017 ◽  
Vol 8 ◽  
Author(s):  
Yunfei Wu ◽  
Xiaofeng Dong ◽  
Tatsuhiko Kadowaki
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Desiderato Annoscia ◽  
Gennaro Di Prisco ◽  
Andrea Becchimanzi ◽  
Emilio Caprio ◽  
Davide Frizzera ◽  
...  

AbstractThe neonicotinoid Clothianidin has a negative impact on NF-κB signaling and on immune responses controlled by this transcription factor, which can boost the proliferation of honey bee parasites and pathogens. This effect has been well documented for the replication of deformed wing virus (DWV) induced by Clothianidin in honey bees bearing an asymptomatic infection. Here, we conduct infestation experiments of treated bees to show that the immune-suppression exerted by Clothianidin is associated with an enhanced fertility of the parasitic mite Varroa destructor, as a possible consequence of a higher feeding efficiency. A conceptual model is proposed to describe the synergistic interactions among different stress agents acting on honey bees.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Morgan A Roth ◽  
James M Wilson ◽  
Keith R Tignor ◽  
Aaron D Gross

Abstract Varroa mite (Varroa destructor Anderson and Trueman) infestation of European honey bee (Apis mellifera L.) colonies has been a growing cause of international concern among beekeepers throughout the last 50 yr. Varroa destructor spread from the Asian honey bee (Apis cerana Fabricius [Hymenoptera: Apidae]) to A. mellifera populations in Europe in the 1970s, and subsequently traveled to the Americas. In addition to causing damage through feeding upon lipids of larval and adult bees, V. destructor also facilitates the spread of several viruses, with deformed wing virus being most prevalent. Several sampling methods have been developed for estimating infestation levels of A. mellifera colonies, and acaricide treatments have been implemented. However, overuse of synthetic acaricides in the past has led to widespread acaricide resistant V. destructor populations. The application of Integrated Pest Management (IPM) techniques is a more recent development in V. destructor control and is suggested to be more effective than only using pesticides, thereby posing fewer threats to A. mellifera colonies. When using IPM methods, informed management decisions are made based upon sampling, and cultural and mechanical controls are implemented prior to use of acaricide treatments. If acaricides are deemed necessary, they are rotated based on their mode of action, thus avoiding V. destructor resistance development.


2011 ◽  
Vol 78 (1) ◽  
pp. 227-235 ◽  
Author(s):  
Barbara Locke ◽  
Eva Forsgren ◽  
Ingemar Fries ◽  
Joachim R. de Miranda

ABSTRACTHoney bee (Apis mellifera) colonies are declining, and a number of stressors have been identified that affect, alone or in combination, the health of honey bees. The ectoparasitic miteVarroa destructor, honey bee viruses that are often closely associated with the mite, and pesticides used to control the mite population form a complex system of stressors that may affect honey bee health in different ways. During an acaricide treatment using Apistan (plastic strips coated with tau-fluvalinate), we analyzed the infection dynamics of deformed wing virus (DWV), sacbrood virus (SBV), and black queen cell virus (BQCV) in adult bees, mite-infested pupae, their associatedVarroamites, and uninfested pupae, comparing these to similar samples from untreated control colonies. Titers of DWV increased initially with the onset of the acaricide application and then slightly decreased progressively coinciding with the removal of theVarroamite infestation. This initial increase in DWV titers suggests a physiological effect of tau-fluvalinate on the host's susceptibility to viral infection. DWV titers in adult bees and uninfested pupae remained higher in treated colonies than in untreated colonies. The titers of SBV and BQCV did not show any direct relationship with mite infestation and showed a variety of possible effects of the acaricide treatment. The results indicate that other factors besidesVarroamite infestation may be important to the development and maintenance of damaging DWV titers in colonies. Possible biochemical explanations for the observed synergistic effects between tau-fluvalinate and virus infections are discussed.


2019 ◽  
Author(s):  
Francisco Posada-Florez ◽  
Anna K. Childers ◽  
Matthew C. Heerman ◽  
Noble I. Egekwu ◽  
Steven C. Cook ◽  
...  

AbstractHoney bees, the primary managed insect pollinator, suffer considerable losses due to Deformed wing virus (DWV), an RNA virus vectored by the mite Varroa destructor. Mite vectoring has resulted in the emergence of virulent DWV variants. The basis for such changes in DWV is poorly understood. Most importantly, it remains unclear whether replication of DWV occurs in the mite. In this study, we exposed Varroa mites to DWV type A via feeding on artificially infected honey bees. A significant, 357-fold increase in DWV load was observed in these mites after 2 days. However, after 8 additional days of passage on honey bee pupae with low viral loads, the DWV load dropped by 29-fold. This decrease significantly reduced the mites’ ability to transmit DWV to honey bees. Notably, negative-strand DWV RNA, which could indicate viral replication, was detected only in mites collected from pupae with high DWV levels but not in the passaged mites. We also found that Varroa mites contain honey bee mRNAs, consistent with the acquisition of honey bee cells which would additionally contain DWV replication complexes with negative-strand DWV RNA. We propose that transmission of DWV type A by Varroa mites occurs in a non-propagative manner.


2020 ◽  
Author(s):  
Yunfei Wu ◽  
Qiushi Liu ◽  
Benjamin Weiss ◽  
Martin Kaltenpoth ◽  
Tatsuhiko Kadowaki

AbstractThe negative effects of honey bee parasitic mites and deformed wing virus (DWV) on honey bee and colony health have been well characterized. However, the relationship between DWV and mites, particularly viral replication inside the mites, remains unclear. Furthermore, the physiological outcomes of honey bee immune responses stimulated by DWV and the mite to the host (honey bee) and perhaps the pathogen/parasite (DWV/mite) are not yet understood. To answer these questions, we studied the tripartite interactions between the honey bee, Tropilaelaps mercedesae, and DWV as the model. T. mercedesae functioned as a vector for DWV without supporting active viral replication. Thus, DWV negligibly affected mite fitness. Mite infestation induced mRNA expression of antimicrobial peptides (AMPs), Defensin-1 and Hymenoptaecin, which correlated with DWV copy number in honey bee pupae and mite feeding, respectively. Feeding T. mercedesae with fruit fly S2 cells heterologously expressing honey bee Hymenoptaecin significantly downregulated mite Vitellogenin expression, indicating that the honey bee AMP manipulates mite reproduction upon feeding on bee. Our results provide insights into the mechanism of DWV transmission by the honey bee parasitic mite to the host, and the novel role of AMP in defending against mite infestation.


2018 ◽  
Author(s):  
Jing Lei ◽  
Qiushi Liu ◽  
Tatsuhiko Kadowaki

AbstractHoney bee parasitic mites (Tropilaelaps mercedesae and Varroa destructor) detect temperature, humidity, and odor but the underlying sensory mechanisms are poorly understood. To uncover how T. mercedesae responds to environmental stimuli inside a hive, we identified the sensilla-rich sensory organ on the foreleg tarsus. The organ contained four types of sensilla, which may respond to different stimuli based on their morphology. We found the forelegs were enriched with mRNAs encoding sensory proteins such as ionotropic receptors (IRs) and gustatory receptors (GRs), as well as proteins involved in ciliary transport. We also found that T. mercedesae and Drosophila melanogaster IR25a and IR93a are functionally equivalent. These results demonstrate that the structures and physiological functions of ancient IRs have been conserved during arthropod evolution. Our study provides insight into the sensory mechanisms of honey bee parasitic mites, as well as potential targets for methods to control the most serious honey bee pest.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 717
Author(s):  
Tamás Sipos ◽  
Tamás Donkó ◽  
Ildikó Jócsák ◽  
Sándor Keszthelyi

The honey bee (Apis mellifera L. 1778) is an essential element in maintaining the diversity of the biosphere and food production. One of its most important parasites is Varroa destructor, Anderson and Trueman, 2000, which plays a role in the vectoring of deformed wing virus (DWV) in honey bee colonies. Our aim was to measure the potential morphometric changes in the pre-imaginal stage of A. mellifera caused by varroosis by means of computed tomography, hence supplying evidence for the presumable role that V. destructor plays as a virus vector. Based on our results, the developmental disorders in honey bees that ensued during the pre-imaginal stages were evident. The total-body length and abdomen length of parasitized specimens were shorter than those of their intact companions. In addition, the calculated quotients of the total-body/abdomen, head/thorax, and head/abdomen in parasitized samples were significantly altered upon infestation. In our view, these phenotypical disorders can also be traced to viral infection mediated by parasitism, which was confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Capitalizing on a non-destructive method, our study reveals the deformation of the honey bee due to mite parasitism and the intermediary role this pest plays in viral infection, inside the brood cell.


Sign in / Sign up

Export Citation Format

Share Document