Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan

Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132279
Author(s):  
Thi-Thuy Luu ◽  
Van-Phuc Dinh ◽  
Quang-Hung Nguyen ◽  
Ngoc-Quyen Tran ◽  
Duy-Khoi Nguyen ◽  
...  
1998 ◽  
Vol 204 (1) ◽  
pp. 169-172 ◽  
Author(s):  
Jyotsnamayee Pradhan ◽  
Jasobanta Das ◽  
Surendranath Das ◽  
Ravindra Singh Thakur
Keyword(s):  

2013 ◽  
Vol 825 ◽  
pp. 568-571
Author(s):  
Namgyu Kim ◽  
Munsik Park ◽  
Jongmoon Park ◽  
Donghee Park

An anionic biosorbent was derived from an industrial fermentation biowate, Corynebacterium glutamicum, by being cross-linked with polyethylenimine (PEI). A fiber form of the biosorbent was used to examine its potentiality of removing anionic metals such as As (V), Cr (VI) and Mn (VII) in aqueous system. As (V) and Cr (VI) were efficiently removed by the biosorbent through anionic adsorption mechanism. Sulfate ion seriously inhibited adsorption of the anionic metals through competitive inhibition with respect to the binding site of the biosorbent. In the case of Mn (VII), its removal mechanism by the biosorbent was not anionic adsorption. Mn (VII) was completely removed in aqueous phase, meanwhile, Mn (II) appeared and increased in proportion to the Mn (VII) depletion. As a result, adsorption coupled reduction was chosen as the mechanism of Mn (VII) removal by the biosorbent. In conclusion, the anionic biosorbent could be used to remove various anionic metals from aqueous solution through anionic adsorption or reduction mechanism.


2007 ◽  
Vol 142 (1-2) ◽  
pp. 412-417 ◽  
Author(s):  
Yunus Cengeloglu ◽  
Ali Tor ◽  
Gulsin Arslan ◽  
Mustafa Ersoz ◽  
Sait Gezgin
Keyword(s):  

2018 ◽  
Vol 922 ◽  
pp. 8-13
Author(s):  
Wen Xiu Liu ◽  
Peng Sun ◽  
Jun Zhang ◽  
Wen Bin Cao

Stable TiO2aqueous dispersion with an averaged secondary particle size of about 10 nm was achieved by using commercially available dispersant Di-7N. The stability of the dispersion was measured by Zeta-potential test. And the results showed that the optimal mass fraction of Di-7N was 12 wt%. The adsorption mechanism examined by FTIR analysis indicates that the carboxylate groups in Di-7N is absorbed on the surface of nano-TiO2particles and the adsorbed structure is proposed to be bidentate chelating.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Mingjie Ma ◽  
Guanyu Wang ◽  
Zhengpeng Yang ◽  
Shanxiu Huang ◽  
Weijie Guo ◽  
...  

Solid waste red mud was modified by HCl leaching. The structure property and composition of modified red mud were investigated by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET). Under UV irradiation, methyl orange (MO) aqueous solution was photodegraded by modified red mud. The obtained results showed that the specific surface area of modified red mud was 317.14 m2/g, which was about 40 times higher than that of the normal red mud. After UV irradiation for 50 min, the removal percentage of MO reached 94.2%. The study provided a novel way for the application of red mud to the photocatalytic degradation of organic wastes.


2019 ◽  
Vol 800 ◽  
pp. 151-156
Author(s):  
Yamina Chergui ◽  
Abdelkader Iddou ◽  
Hafida Hentit ◽  
Abdallah Aziz ◽  
Jean Claude Jumas

The objective of this study was the synthesis of various activated carbons from grape marc issued from oenological by-product as a biosorbent. The biosolid was then applied to remove an industrial dye (red bemacid ETL) in aqueous solution. Activation of the synthesized charcoal was carried out using a solution of zinc chloride induced by two physical methods (microwaves and heating at 300°C). The obtained materials are characterized by FTIR and SEM methods. Results from batch adsorption tests have shown that pH solution, initial dye concentration and contact time affect the adsorption mechanism. Removal of the industrial dye revealed second order kinetics, exothermic adsorption and isothermal adsorption of BET type.


Sign in / Sign up

Export Citation Format

Share Document