Biosorption of Textile Dye Red Bemacid ETL Using Activated Charcoal of Grape Marc (Oenological By-Product)

2019 ◽  
Vol 800 ◽  
pp. 151-156
Author(s):  
Yamina Chergui ◽  
Abdelkader Iddou ◽  
Hafida Hentit ◽  
Abdallah Aziz ◽  
Jean Claude Jumas

The objective of this study was the synthesis of various activated carbons from grape marc issued from oenological by-product as a biosorbent. The biosolid was then applied to remove an industrial dye (red bemacid ETL) in aqueous solution. Activation of the synthesized charcoal was carried out using a solution of zinc chloride induced by two physical methods (microwaves and heating at 300°C). The obtained materials are characterized by FTIR and SEM methods. Results from batch adsorption tests have shown that pH solution, initial dye concentration and contact time affect the adsorption mechanism. Removal of the industrial dye revealed second order kinetics, exothermic adsorption and isothermal adsorption of BET type.

2015 ◽  
Vol 43 (3) ◽  
pp. 277-281 ◽  
Author(s):  
M Rahman ◽  
S Gul ◽  
M Ajmal ◽  
A Iqbal ◽  
Akk Achakzai

Removal of cadmium from aqueous solution was studied by using Quetta pine (Pinus halepensis Mill.) leaves. Batch adsorption experiments were performed as a function of appropriate equilibrium time, pH, concentration of adsorbate and amount of adsorbent. The optimum pH required for maximum adsorption was found to be 7.0 and the maximum contact time for the equilibrium was 30 minutes at adsorbent dose of 10 g. The maximum adsorption efficiency of cadmium removal was 98.50%. The results were better fitted by Langmuir than Freundlich isotherm. The separation factor of equilibrium 0.12 and 0.67 showed that Quetta pine leaves are good adsorbent of cadmium from aqueous solution DOI: http://dx.doi.org/10.3329/bjb.v43i3.21598 Bangladesh J. Bot. 43(3): 277-281, 2014 (December)


2011 ◽  
Vol 8 (2) ◽  
pp. 803-808 ◽  
Author(s):  
U. V. Ladhe ◽  
S. K. Wankhede ◽  
V. T. Patil ◽  
P. R. Patil

Adsorptions of Erichrome Black T dye in aqueous solution on cotton stem activated carbon have been studied as a function of contact time, concentration and pH. Effect of various experimental parameters has been investigated at 39±1°C under batch adsorption technique. The result shows that cotton stem activated carbon adsorbs dye to a sufficient extent. The physicochemical characterization and chemical kinetics was also examined for the same dye. The overall result shows that it can be fruitfully used for the removal of dye from wastewaters.


2020 ◽  
Vol 82 (5) ◽  
pp. 887-904
Author(s):  
Ezekiel A. Adetoro ◽  
Samson O. Ojoawo

Abstract The effectiveness of two Azadirachta indica bark activated carbons (ABAC) for the removal of selected toxic metals from mining wastewater and the attendant challenge of multivariate factors in the process were enhanced through optimization studies. Experimental design was carried out using adsorbent dosage, agitation rate, contact time, grain size, pH and temperature as independent variables. Batch adsorption experiments were conducted using the experimental design result, then the experimental data obtained were optimized using Design-Expert software and the results validated. Optimum values for ABAC-NaOH adsorbent were 1.999 g of adsorbent dosage, 149.73 rpm agitation rate, 119.55 min contact time, 2 mm grain size, pH of 7 and 30 °C temperature; while for ABAC-HCl adsorbent the optimum values were 3.993 g of adsorbent dosage, 150 rpm agitation rate, 120 min contact time, 2 mm grain size, pH of 7.001 and 30 °C temperature. These resulted in 100% removal efficiencies for all the selected toxic metals with standard errors of between 0.02 and 2.72%. So the optimization process is a very useful tool in adsorption studies. It has the merits of being economical, energy and time saving, and is therefore strongly recommended for the biosorption of toxic metals from mining wastewater using Azadirachta indica adsorbent.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 927 ◽  
Author(s):  
Viviana Palos-Barba ◽  
Abigail Moreno-Martell ◽  
Verónica Hernández-Morales ◽  
Carmen L. Peza-Ledesma ◽  
Eric M. Rivera-Muñoz ◽  
...  

Tridimensional cubic mesoporous silica, SBA-16, functionalized with aminopropyl groups, were employed as adsorbents for Pb2+ ion removal from aqueous solution. The adsorption capacity was investigated for the effect of pH, contact time, temperature, and concentration of 3-aminopropyltriethoxysilane (APTES) employed for adsorbent functionalization. The textural properties and morphology of the adsorbents were evaluated by N2 physisorption, small-angle X-ray diffraction (XRD), diffuse reflectance spectroscopy (UV-vis), and transmission electron microscopy (TEM). The functionalization of the SBA-16 was evaluated by elemental analysis (N), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Batch adsorption studies show that the total Pb2+ ions removal was archived on adsorbent having an optimized amount of aminopropyl groups (2N-SBA-16). The maximum of Pb2+ ions removal occurred at optimized adsorption conditions: pH = 5–6, contact time 40 min, and at a low initial lead concentration in solution (200 mg L−1). Under the same adsorption conditions, the amino-functionalized SBA-16 with cubic 3D unit cell structure exhibited higher adsorption capability than its SBA-15 counterpart with uniform mesoporous channels.


2020 ◽  
Vol 12 (1) ◽  
pp. 167-177
Author(s):  
Ayuba Abdullahi Muhammad ◽  
Nyijime Thomas Aondofa

Carbonized Bambara GroundNut Shell (CBGNS) was used as adsorbent for the adsorption of paraquat dichloride (PQ) from aqueous solution. The prepared adsorbent was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy methods. Several parameters that might affect the adsorption process including pH, contact time, adsorbent dosage, temperature and initial concentration were investigated and optimized using batch adsorption technique. Results of the study revealed that maximum removal efficiency (98%) was achieved using 0.05g adsorbent dosage, solution pH of 5 and 60 min of contact time. The equilibrium experimental result revealed that Langmuir model best described the adsorption process with R2 value of 0.956.The heat of adsorption process was estimated from Temkin Isotherm model to be 19.99J/mol and the mean free energy was estimated from Duninin-Radushkevich (DRK) isotherm model to be 0.289KJ/mol indicating chemisorptions process. The kinetic and thermodynamic studies revealed that the adsorption processes followed pseudo-second-order kinetics with R2 value of 0.999 and the value of ∆G (- 27.74 kJ mol-1), ∆H (13.145 kJ mol-1) indicate the spontaneous and endothermic nature of PQ adsorption on CBGNS. The results suggested that CBGNS had the potential to become a promising material for PQ contaminated water treatment. Keywords: Adsorption, Paraquat dichloride, Carbonized Bambara Ground nut shell, Water treatment.


Author(s):  
Neha bhadauria ◽  
Arjun Suresh

The present study analyzed the efficiency of a naturally derived fenugreek powder for removal of Congo red dye from the aqueous solution. The flocculation Studies on Congo Red (CR) a hazardous, textile dye onto Fenugreek Powder and its adsorption was analyzed. Fenugreek Powder is Eco-friendly, biodegradable and locally available in the market. The dye adsorption process was performed in different batches at varying pH, dye concentration, adsorbent concentration and contact time to get the best results. The result showed that the maximum removal of dye was 42.4% with 10mg/l of Fenugreek powder at pH 4.


2013 ◽  
Vol 807-809 ◽  
pp. 1380-1383 ◽  
Author(s):  
Chun Yan Yan ◽  
Wen Tao Yi

Carboxymethyl cellulose (CMC)-supported layered double hydroxides (CMC-LDHs) were synthesized by ion exchange method. The raw cellulose, unsupported LDH and CMC-LDHs were characterized by XRD, and FTIR. The CMC-LDHs was applied to adsorb boron with batch adsorption in aqueous solution, and the conditions influencing its adsorption amount were investigated. The experimental results showed that the CMC-LDHs had higher adsorption amount than the precursor, and the adsorption amount increased with increasing the contact time, boron concentration, and the pH.


2016 ◽  
Vol 11 (1) ◽  
pp. 140-150 ◽  
Author(s):  
Rajeshwar Man Shrestha

Batch adsorption experiments were conducted for the adsorption of Cd (II) ions from aqueous solution by activated carbon prepared from Lapsi seed stone. The activated carbon was characterized by Iodine number, Methylene blue number, SEM and FTIR. Adsorption experiments were carried out to describe the effect of pH ,contact time and  adsorbent dose on the metal ion removal process .The results showed that the adsorption of Cd (II) ions was very fast initially and the equilibrium time was 3 hrs.The pH of 6.0 was an optimal pH for adsorption  of Cd(II) ions. Langmuir and Freundlich adsorption isotherms were used to explain the equilibrium data. Langmuir model best described the data with higher value of coeffcient of determination as −1 compared to that of Freundlich isotherm showing a maximum uptake of 37.0 mgg . This study demonstrated that the activated carbons prepared from Lapsi seed stone could be used for the removal of Cd (II) ions in water treatment. Journal of the Institute of Engineering, 2015, 11(1): 140-150


2015 ◽  
Vol 22 (2) ◽  
pp. 233 ◽  
Author(s):  
Poedji Loekitowati Hariani ◽  
Fatma Fatma ◽  
Fahma Riyanti ◽  
Hesti Ratnasari

Phenolic compounds areorganic pollutants that are toxic and carcinogenic.The presence of phenol in the environmentcan be adverse to humanand the environmentalsystem. One methodthat iseffective toreduce thephenolisadsorption. In this study, the adsorption of phenol in aqueous solution using Ca-bentonite/chitosan composite was investigated. Chitosan is the deacetylation product of chitin from shrimp waste. Characterization of Ca-bentonite/chitosan composite was done by using Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy-Energy Dispersive X Ray Spectroscopy (SEM-EDX). Batch adsorption studies were performed to evaluate the effects of some parameters such as initial concentration of phenol, composite weight, pH and contact time. The results showed that FTIR spectra of Ca-bentonite/chitosan composite presented the characteristic of peak of Ca-bentonite and chitosan that confirmed the successful synthesis of composite. The SEM-EDX characterizationresultsshowedCa-bentonite surfacecoverage by chitosanand the presence ofcarbonandnitrogenelementsinCa-bentonite/chitosancompositeindicated that chitosan had bonded with bentonite. The optimum condition of adsorption of Ca-bentonite/chitosan to phenol was obtained at 125 mg.L-1 of concentration in which the weight of composite was 1.0 g, the pH of solution was 7, the contact time was 30 minutes, and the capacity of adsorption was 12.496 mg.g-1.


Sign in / Sign up

Export Citation Format

Share Document