Advanced catalytic ozonation for degradation of pharmaceutical pollutants―A review

Chemosphere ◽  
2022 ◽  
Vol 289 ◽  
pp. 133208
Author(s):  
Eliasu Issaka ◽  
Jesse Nii-Okai AMU-Darko ◽  
Salome Yakubu ◽  
Funmilayo Omotoyosi Fapohunda ◽  
Nisar Ali ◽  
...  
2021 ◽  
Vol 9 (6) ◽  
pp. 106458
Author(s):  
A. Araújo ◽  
O.S.G.P. Soares ◽  
C.A. Orge ◽  
A.G. Gonçalves ◽  
E. Rombi ◽  
...  

2021 ◽  
Vol 288 ◽  
pp. 120004
Author(s):  
Junxian Gao ◽  
Lingling Tang ◽  
Zhizhang Shen ◽  
Yuming Dong ◽  
Zhenyu Wang ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 521
Author(s):  
Fernando J. Beltrán ◽  
Ana Rey ◽  
Olga Gimeno

Formation of disinfection byproducts (DBPs) in drinking water treatment (DWT) as a result of pathogen removal has always been an issue of special attention in the preparation of safe water. DBPs are formed by the action of oxidant-disinfectant chemicals, mainly chlorine derivatives (chlorine, hypochlorous acid, chloramines, etc.), that react with natural organic matter (NOM), mainly humic substances. DBPs are usually refractory to oxidation, mainly due to the presence of halogen compounds so that advanced oxidation processes (AOPs) are a recommended option to deal with their removal. In this work, the application of catalytic ozonation processes (with and without the simultaneous presence of radiation), moderately recent AOPs, for the removal of humic substances (NOM), also called DBPs precursors, and DBPs themselves is reviewed. First, a short history about the use of disinfectants in DWT, DBPs formation discovery and alternative oxidants used is presented. Then, sections are dedicated to conventional AOPs applied to remove DBPs and their precursors to finalize with the description of principal research achievements found in the literature about application of catalytic ozonation processes. In this sense, aspects such as operating conditions, reactors used, radiation sources applied in their case, kinetics and mechanisms are reviewed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guhankumar Ponnusamy ◽  
Hajar Farzaneh ◽  
Yongfeng Tong ◽  
Jenny Lawler ◽  
Zhaoyang Liu ◽  
...  

AbstractHeterogeneous catalytic ozonation is an effective approach to degrade refractory organic pollutants in water. However, ozonation catalysts with combined merits of high activity, good reusability and low cost for practical industrial applications are still rare. This study aims to develop an efficient, stable and economic ozonation catalyst for the degradation of Ibuprofen, a pharmaceutical compound frequently detected as a refractory pollutant in treated wastewaters. The novel three-dimensional network-structured catalyst, comprising of δ-MnO2 nanosheets grown on woven carbon microfibers (MnO2 nanosheets/carbon microfiber), was synthesized via a facile hydrothermal approach. Catalytic ozonation performance of Ibuprofen removal in water using the new catalyst proves a significant enhancement, where Ibuprofen removal efficiency of close to 90% was achieved with a catalyst loading of 1% (w/v). In contrast, conventional ozonation was only able to achieve 65% removal efficiency under the same operating condition. The enhanced performance with the new catalyst could be attributed to its significantly increased available surface active sites and improved mass transfer of reaction media, as a result of the special surface and structure properties of this new three-dimensional network-structured catalyst. Moreover, the new catalyst displays excellent stability and reusability for ibuprofen degradation over successive reaction cycles. The facile synthesis method and low-cost materials render the new catalyst high potential for industrial scaling up. With the combined advantages of high efficiency, high stability, and low cost, this study sheds new light for industrial applications of ozonation catalysts.


Sign in / Sign up

Export Citation Format

Share Document