Experimental determination and computational prediction of the mixing efficiency of a simple, continuous, serpentine-channel microdevice

2021 ◽  
Vol 167 ◽  
pp. 303-317
Author(s):  
Siril Arockiam ◽  
Yu Hsuan Cheng ◽  
Piero M. Armenante ◽  
Sagnik Basuray
2014 ◽  
Vol 53 (28) ◽  
pp. 11538-11549 ◽  
Author(s):  
Weiwei Tang ◽  
Zhao Wang ◽  
Ying Feng ◽  
Chuang Xie ◽  
Jingkang Wang ◽  
...  

Author(s):  
K Karthikeyan ◽  
L Sujatha

AbstractThis paper deals with design, simulation, fabrication, analysis of mixing efficiency and thin film bonding stability of the micromixer devices with different flow rates used for lab on chip applications. The objective of the present study is to achieve complete mixing with low flow rate and less pressure drop in low cost polymer microfluidic devices. This paper emphasis the design, simulation and fabrication of straight channel micromixer, serpentine channel micromixer with and without quadrant shaped grooves to study the mixing behavior by the effect of structural dimensions of the microfluidic channel at different flow rates. The designed micromixers were tested with varying rates of flow such as 1, 10, 25, 50, 75 and 100 µL/min.


Author(s):  
A. K. Rai ◽  
R. S. Bhattacharya ◽  
M. H. Rashid

Ion beam mixing has recently been found to be an effective method of producing amorphous alloys in the binary metal systems where the two original constituent metals are of different crystal structure. The mechanism of ion beam mixing are not well understood yet. Several mechanisms have been proposed to account for the observed mixing phenomena. The first mechanism is enhanced diffusion due to defects created by the incoming ions. Second is the cascade mixing mechanism for which the kinematicel collisional models exist in the literature. Third mechanism is thermal spikes. In the present work we have studied the mixing efficiency and ion beam induced amorphisation of Ni-Ti system under high energy ion bombardment and the results are compared with collisional models. We have employed plan and x-sectional veiw TEM and RBS techniques in the present work.


1999 ◽  
Vol 96 (6) ◽  
pp. 1111-1116 ◽  
Author(s):  
E. Falcon ◽  
S. Fauve ◽  
C. Laroche

Sign in / Sign up

Export Citation Format

Share Document