Study of Permissible Flow Rate and Mixing Efficiency of the Micromixer Devices

Author(s):  
K Karthikeyan ◽  
L Sujatha

AbstractThis paper deals with design, simulation, fabrication, analysis of mixing efficiency and thin film bonding stability of the micromixer devices with different flow rates used for lab on chip applications. The objective of the present study is to achieve complete mixing with low flow rate and less pressure drop in low cost polymer microfluidic devices. This paper emphasis the design, simulation and fabrication of straight channel micromixer, serpentine channel micromixer with and without quadrant shaped grooves to study the mixing behavior by the effect of structural dimensions of the microfluidic channel at different flow rates. The designed micromixers were tested with varying rates of flow such as 1, 10, 25, 50, 75 and 100 µL/min.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1113
Author(s):  
Mohammed Asadullah Khan ◽  
Jürgen Kosel

An integrated polymer-based magnetohydrodynamic (MHD) pump that can actuate saline fluids in closed-channel devices is presented. MHD pumps are attractive for lab-on-chip applications, due to their ability to provide high propulsive force without any moving parts. Unlike other MHD devices, a high level of integration is demonstrated by incorporating both laser-induced graphene (LIG) electrodes as well as a NdFeB magnetic-flux source in the NdFeB-polydimethylsiloxane permanent magnetic composite substrate. The effects of transferring the LIG film from polyimide to the magnetic composite substrate were studied. Operation of the integrated magneto hydrodynamic pump without disruptive bubbles was achieved. In the studied case, the pump produces a flow rate of 28.1 µL/min. while consuming ~1 mW power.


ORL ◽  
2021 ◽  
pp. 1-5
Author(s):  
Jingjing Liu ◽  
Tengfang Chen ◽  
Zhenggang Lv ◽  
Dezhong Wu

<b><i>Introduction:</i></b> In China, nasal cannula oxygen therapy is typically humidified. However, it is difficult to decide whether to suspend nasal cannula oxygen inhalation after the nosebleed has temporarily stopped. Therefore, we conducted a preliminary investigation on whether the use of humidified nasal cannulas in our hospital increases the incidence of epistaxis. <b><i>Methods:</i></b> We conducted a survey of 176,058 inpatients in our hospital and other city branches of our hospital over the past 3 years and obtained information concerning their use of humidified nasal cannulas for oxygen inhalation, nonhumidified nasal cannulas, anticoagulant and antiplatelet drugs, and oxygen inhalation flow rates. This information was compared with the data collected at consultation for epistaxis during these 3 years. <b><i>Results:</i></b> No significant difference was found between inpatients with humidified nasal cannulas and those without nasal cannula oxygen therapy in the incidence of consultations due to epistaxis (χ<sup>2</sup> = 1.007, <i>p</i> &#x3e; 0.05). The same trend was observed among hospitalized patients using anticoagulant and antiplatelet drugs (χ<sup>2</sup> = 2.082, <i>p</i> &#x3e; 0.05). Among the patients with an inhaled oxygen flow rate ≥5 L/min, the incidence of ear-nose-throat (ENT) consultations due to epistaxis was 0. No statistically significant difference was found between inpatients with a humidified oxygen inhalation flow rate &#x3c;5 L/min and those without nasal cannula oxygen therapy in the incidence of ENT consultations due to epistaxis (χ<sup>2</sup> = 0.838, <i>p</i> &#x3e; 0.05). A statistically significant difference was observed in the incidence of ENT consultations due to epistaxis between the low-flow nonhumidified nasal cannula and nonnasal cannula oxygen inhalation groups (χ<sup>2</sup> = 18.428, <i>p</i> &#x3c; 0.001). The same trend was observed between the 2 groups of low-flow humidified and low-flow nonhumidified nasal cannula oxygen inhalation (χ<sup>2</sup> = 26.194, <i>p</i> &#x3c; 0.001). <b><i>Discussion/Conclusion:</i></b> Neither high-flow humidified nasal cannula oxygen inhalation nor low-flow humidified nasal cannula oxygen inhalation will increase the incidence of recurrent or serious epistaxis complications; the same trend was observed for patients who use anticoagulant and antiplatelet drugs. Humidification during low-flow nasal cannula oxygen inhalation can prevent severe and repeated epistaxis to a certain extent.


Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 65
Author(s):  
Puneet Manocha ◽  
Gitanjali Chandwani

Molecular communication is a bioinspired communication that enables macro-scale, micro-scale and nano-scale devices to communicate with each other. The molecular communication system is prone to severe signal attenuation, dispersion and delay, which leads to performance degradation as the distance between two communicating devices increases. To mitigate these challenges, relays are used to establish reliable communication in microfluidic channels. Relay assisted molecular communication systems can also enable interconnection among various entities of the lab-on-chip for sharing information. Various relaying schemes have been proposed for reliable molecular communication systems, most of which lack practical feasibility. Thus, it is essential to design and develop relays that can be practically incorporated into the microfluidic channel. This paper presents a novel design of passive in-line relay for molecular communication system that can be easily embedded in the microfluidic channel and operate without external energy. Results show that geometric modification in the microfluidic channel can act as a relay and restore the degraded signal up-to 28%.


Author(s):  
Jing Ren ◽  
Sriram Sundararajan

Realistic random roughness of channel surfaces is known to affect the fluid flow behavior in microscale fluidic devices. This has relevance particularly for applications involving non-Newtonian fluids, such as biomedical lab-on-chip devices. In this study, a surface texturing process was developed and integrated into microfluidic channel fabrication. The process combines colloidal masking and Reactive Ion Etching (RIE) for generating random surfaces with desired roughness parameters on the micro/nanoscale. The surface texturing process was shown to be able to tailor the random surface roughness on quartz. A Large range of particle coverage (around 6% to 67%) was achieved using dip coating and drop casting methods using a polystyrene colloidal solution. A relation between the amplitude roughness, autocorrelation length, etch depth and particle coverage of the processed surface was built. Experimental results agreed reasonably well with model predictions. The processed substrate was further incorporated into microchannel fabrication. Final device with designed wall roughness was tested and proved a satisfying sealing performance.


2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1467
Author(s):  
Harry Dawson ◽  
Jinane Elias ◽  
Pascal Etienne ◽  
Sylvie Calas-Etienne

The integration of optical circuits with microfluidic lab-on-chip (LoC) devices has resulted in a new era of potential in terms of both sample manipulation and detection at the micro-scale. On-chip optical components increase both control and analytical capabilities while reducing reliance on expensive laboratory photonic equipment that has limited microfluidic development. Notably, in-situ LoC devices for bio-chemical applications such as diagnostics and environmental monitoring could provide great value as low-cost, portable and highly sensitive systems. Multiple challenges remain however due to the complexity involved with combining photonics with micro-fabricated systems. Here, we aim to highlight the progress that optical on-chip systems have made in recent years regarding the main LoC applications: (1) sample manipulation and (2) detection. At the same time, we aim to address the constraints that limit industrial scaling of this technology. Through evaluating various fabrication methods, material choices and novel approaches of optic and fluidic integration, we aim to illustrate how optic-enabled LoC approaches are providing new possibilities for both sample analysis and manipulation.


2007 ◽  
Author(s):  
Andrew L. Clow ◽  
Rainer Künnemeyer ◽  
Paul Gaynor ◽  
John C. Sharpe

Author(s):  
Can Kang ◽  
Ning Mao ◽  
Chen Pan ◽  
Yang Zhu ◽  
Bing Li

A low-specific-speed centrifugal pump equipped with long and short blades is studied. Emphasis is placed on the pump performance and inner flow characteristics at low flow rates. Each short blade is intentionally shifted towards the back surface of the neighboring long blade, and the outlet parts of the short blades are uniformly shortened. Unsteady numerical simulation is conducted to disclose inner flow patterns associated with the modified design. Thereby, a comparison is enabled between the two schemes featured by different short blades. Both practical operation data and numerical results support that the deviation and cutting of the short blades can eliminate the positive slope of pump head curve at low flow rates. Therefore, the modification of short blades improves the pump operation stability. Due to the shortening of the outlet parts of the short blades, velocity distributions between impeller outlet and radial diffuser inlet exhibit explicitly altered circumferential flow periodicity. Pressure fluctuations in the radial diffuser are complex in terms of diversified periodicity and amplitudes. Flow rate influences pressure fluctuations in the radial diffuser considerably. As flow rate decreases, the regularity of the orbit of hydraulic loads exerted upon the impeller collapses while hydraulic loads exerted upon the short blades remain circumferentially periodic.


2018 ◽  
Vol 15 (6) ◽  
pp. E94-E99 ◽  
Author(s):  
Ralph Rahme ◽  
Tejaswi D Sudhakar ◽  
Marjan Alimi ◽  
Timothy G White ◽  
Rafael A Ortiz ◽  
...  

Abstract BACKGROUND AND IMPORTANCE Cerebral hyperperfusion syndrome (CHS) is a well-known complication of superficial temporal artery (STA) to middle cerebral artery (MCA) bypass for ischemic cerebrovascular disease. While this argues against “low flow” in the bypass construct, flow rates in the graft have not been previously quantified in the setting of CHS. CLINICAL PRESENTATION A 58-yr-old man presented with recurrent left hemispheric ischemic strokes and fluctuating right hemiparesis and aphasia. Vascular imaging revealed left cervical internal carotid artery occlusion and perfusion imaging confirmed left hemispheric hypoperfusion. After failing to respond to maximal medical therapy, the patient underwent single-barrel STA-MCA bypass. Postoperatively, his symptoms resolved and blood pressure (BP) was strictly controlled within normal range. However, 2 d later, he developed severe expressive aphasia. CTA demonstrated a patent bypass graft and SPECT showed focal hyperperfusion in Broca's speech area. Seizure activity was ruled out. A high graft flow rate of 52 mL/min was documented by quantitative magnetic resonance angiography (MRA). Thus, the diagnosis of CHS was made and managed with strict BP control. The patient exhibited complete recovery of speech over a period of days and was discharged home. Repeat SPECT at 4 mo showed resolution of hyperperfusion and quantitative MRA demonstrated reduction of graft flow rate to 34 mL/min. CONCLUSION This is the first case of perfusion imaging-proven CHS after STA-MCA bypass, where high graft flow rates are objectively documented. Our observations constitute irrefutable evidence challenging the classic belief that the STA-MCA bypass is a low-flow construct.


Sign in / Sign up

Export Citation Format

Share Document