Integrated isolation of antibody fragments from microbial cell culture fluids using supermacroporous cryogels

2004 ◽  
Vol 1045 (1-2) ◽  
pp. 93-98 ◽  
Author(s):  
Maria B Dainiak ◽  
Ashok Kumar ◽  
Fatima M Plieva ◽  
Igor Yu Galaev ◽  
Bo Mattiasson
mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Anand Srinivasan ◽  
Kai P. Leung ◽  
Jose L. Lopez-Ribot ◽  
Anand K. Ramasubramanian

ABSTRACT Micro- and nanoscale technologies have radically transformed biological research from genomics to tissue engineering, with the relative exception of microbial cell culture, which is still largely performed in microtiter plates and petri dishes. Here, we present nanoscale culture of the opportunistic fungal pathogen Candida albicans on a microarray platform. The microarray consists of 1,200 individual cultures of 30 nl of C. albicans biofilms (“nano-biofilms”) encapsulated in an inert alginate matrix. We demonstrate that these nano-biofilms are similar to conventional macroscopic biofilms in their morphological, architectural, growth, and phenotypic characteristics. We also demonstrate that the nano-biofilm microarray is a robust and efficient tool for accelerating the drug discovery process: (i) combinatorial screening against a collection of 28 antifungal compounds in the presence of immunosuppressant FK506 (tacrolimus) identified six drugs that showed synergistic antifungal activity, and (ii) screening against the NCI challenge set small-molecule library identified three heretofore-unknown hits. This cell-based microarray platform allows for miniaturization of microbial cell culture and is fully compatible with other high-throughput screening technologies. IMPORTANCE Microorganisms are typically still grown in petri dishes, test tubes, and Erlenmeyer flasks in spite of the latest advances in miniaturization that have benefitted other allied research fields, including genomics and proteomics. Culturing microorganisms in small scale can be particularly valuable in cutting down time, cost, and reagent usage. This paper describes the development, characterization, and application of nanoscale culture of an opportunistic fungal pathogen, Candida albicans. Despite a more than 2,000-fold reduction in volume, the growth characteristics and drug response profiles obtained from the nanoscale cultures were comparable to the industry standards. The platform also enabled rapid identification of new drug candidates that were effective against C. albicans biofilms, which are a major cause of mortality in hospital-acquired infections.


2007 ◽  
Vol 68 (1) ◽  
pp. 172-177 ◽  
Author(s):  
J. Ma ◽  
W.T. Qi ◽  
L.N. Yang ◽  
W.T. Yu ◽  
Y.B. Xie ◽  
...  
Keyword(s):  

2018 ◽  
Vol 24 (3) ◽  
pp. 342-348
Author(s):  
Atsushi Shibai ◽  
Saburo Tsuru ◽  
Tetsuya Yomo

Ultraviolet (UV) mutagenesis is a widely used technique to increase bacterial mutation rates in laboratory experiments. UV mutagenesis requires fine regulation of UV dose, because the number of dead cells increases exponentially as the dose increases. Ignoring this hazard can cause extinction of UV-exposed populations. Therefore, an automated system that cooperatively conducts both growth measurement and UV irradiation is needed for efficient UV mutagenesis experiments. To address this task, we constructed an automated UV irradiation device for microbial cell culture. This device can measure cell density and irradiate the bacterial cells with UV light automatically according to the state of cell growth. We demonstrated that this growth feedback control avoided extinction and enabled accumulation of mutations in bacterial genomes at a rapid rate for a long period. Whole-genome sequencing revealed the high accumulation rate, neutrality, and spectrum of UV-induced mutations. These characteristics were all consistent with those obtained by manual UV irradiation. These results indicate that our automated device is useful in accelerating mutation accumulation over a long duration.


2017 ◽  
Vol 11 (5) ◽  
pp. 054109 ◽  
Author(s):  
Andrea L. Kadilak ◽  
Jessica C. Rehaag ◽  
Cameron A. Harrington ◽  
Leslie M. Shor

The Analyst ◽  
2016 ◽  
Vol 141 (4) ◽  
pp. 1472-1482 ◽  
Author(s):  
Kun Xiang ◽  
Yinglei Li ◽  
William Ford ◽  
Walker Land ◽  
J. David Schaffer ◽  
...  

We hereby report the design and implementation of an Autonomous Microbial Cell Culture, sensing and Classification (AMC3) system for rapid detection of food pathogens.


Author(s):  
W.N. Bentham ◽  
V. Rocha

It has been an interest of our lab to develop a mammary epethelial cell culture system that faithfully duplicates the in vivo condition of the lactating gland. Since the introduction of collagen as a matrix on which cells are cultivated other E.C.M. type matrices have been made available and are used in many cell culture techniques. We have previously demonstrated that cells cultured on collagen and Matrigel do not differentiate as they do in vivo. It seems that these cultures often produce cells that show a disruption in the secretory process. The appearance of large ribosomal studded vesicles, that specifically label with antibody to casein, suggest an interruption of both protein maturation and secretion at the E.R. to golgi transition. In this report we have examined cultures on collagen and Matrigel at relative high and low seeding densities and compared them to cells from the in vivo condition.


Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Sign in / Sign up

Export Citation Format

Share Document