scholarly journals Development of an Automated UV Irradiation Device for Microbial Cell Culture

2018 ◽  
Vol 24 (3) ◽  
pp. 342-348
Author(s):  
Atsushi Shibai ◽  
Saburo Tsuru ◽  
Tetsuya Yomo

Ultraviolet (UV) mutagenesis is a widely used technique to increase bacterial mutation rates in laboratory experiments. UV mutagenesis requires fine regulation of UV dose, because the number of dead cells increases exponentially as the dose increases. Ignoring this hazard can cause extinction of UV-exposed populations. Therefore, an automated system that cooperatively conducts both growth measurement and UV irradiation is needed for efficient UV mutagenesis experiments. To address this task, we constructed an automated UV irradiation device for microbial cell culture. This device can measure cell density and irradiate the bacterial cells with UV light automatically according to the state of cell growth. We demonstrated that this growth feedback control avoided extinction and enabled accumulation of mutations in bacterial genomes at a rapid rate for a long period. Whole-genome sequencing revealed the high accumulation rate, neutrality, and spectrum of UV-induced mutations. These characteristics were all consistent with those obtained by manual UV irradiation. These results indicate that our automated device is useful in accelerating mutation accumulation over a long duration.

2001 ◽  
Vol 21 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Sung-Lim Yu ◽  
Robert E. Johnson ◽  
Satya Prakash ◽  
Louise Prakash

ABSTRACT The yeast RAD30-encoded DNA polymerase η (Polη) bypasses a cis-syn thymine-thymine dimer efficiently and accurately. Human DNA polymerase η functions similarly in the bypass of this lesion, and mutations in human Polη result in the cancer prone syndrome, the variant form of xeroderma pigmentosum. UV light, however, also elicits the formation ofcis-syn cyclobutane dimers and (6-4) photoproducts at 5′-CC-3′ and 5′-TC-3′ sites, and in both yeast and human DNA, UV-induced mutations occur primarily by 3′ C to T transitions. Genetic studies presented here reveal a role for yeast Polη in the error-free bypass of cyclobutane dimers and (6-4) photoproducts formed at CC and TC sites. Thus, by preventing UV mutagenesis at a wide spectrum of dipyrimidine sites, Polη plays a pivotal role in minimizing the incidence of sunlight-induced skin cancers in humans.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 833
Author(s):  
Edina Preklet ◽  
László Tolvaj ◽  
Eszter Visi-Rajczi ◽  
Tamás Hofmann

The goal of this research was the systematic study and comparison of the divided individual effects of UV light irradiation and water leaching during artificial weathering. Spruce (Picea abies Karst.) and Scots pine (Pinus sylvestris L.) samples were irradiated by ultraviolet (UV) light. Another sequence of samples was treated with the combination of UV irradiation and water leaching. The total extent of UV treatment was 20 days for both series of samples. Time relation of UV irradiation and water leaching was 2:1. The chemical changes were observed by FTIR spectroscopy. The difference spectrum was used for determination of the chemical changes. Degradation of lignin was greater for the leached samples than for the pure UV treated samples. Scots pine suffered greater lignin degradation than spruce, and produced higher absorption increase on the absorption region of unconjugated carbonyls. The unconjugated carbonyl groups were the most responsive chemical elements to leaching. Spruce was more susceptible to leaching of unconjugated carbonyl groups than Scots pine. Two absorption bands of unconjugated carbonyl groups at 1706 and 1764 cm−1 wavenumbers were produced by photodegradation. The absorption band at 1764 cm−1 was more sensitive to water leaching than the band at 1706 cm−1.


Author(s):  
Mariko Nakata ◽  
Masayuki Shimoda ◽  
Shinya Yamamoto

Abstract Irradiation with ultraviolet (UV) light on the cortical surface can induce a focal brain lesion (UV lesion) in rodents. In the present study, we investigated the process of establishing a UV lesion. Rats underwent UV irradiation (365 nm wavelength, 2.0 mWh) over the dura, and time-dependent changes in the cortical tissue were analyzed histologically. We found that the majority of neurons in the lesion started to degenerate within 24 hours and the rest disappeared within 5 days after irradiation. UV-induced neuronal degeneration progressed in a layer-dependent manner. Moreover, UV-induced terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positivity and heme oxygenase-1 (HO-1) immunoreactivity were also detected. These findings suggest that UV irradiation in the brain can induce gradual neural degeneration and oxidative stress. Importantly, UV vulnerability may vary among cortical layers. UV-induced cell death may be due to apoptosis; however, there remains a possibility that UV-irradiated cells were degenerated via processes other than apoptosis. The UV lesion technique will not only assist in investigating brain function at a targeted site but may also serve as a pathophysiological model of focal brain injury and/or neurodegenerative disorders.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Victor Tosin Okomoda ◽  
Haziqah Jumahat Nursyaza ◽  
Ijabo Oga Samuel ◽  
Anuar Hassan ◽  
Abraham Sunday Oladimeji ◽  
...  

Summary The optimum distance and duration of ultraviolet (UV) irradiation for the complete inactivation of African catfish Clarias gariepinus egg nucleus was investigated in this study. The UV light was suspended above the unfertilized eggs at four distances (5, 10, 20 and 30 cm) and for five durations (1, 2, 3, 4 and 5 min). Then, the irradiated eggs were activated with sperm from diploid C. gariepinus and cold shocked at 5°C for 5 min just moments before cell cleavage. Ploidy analysis was performed using karyotype chromosome counting. The results obtained suggested that the further the distance, the better the hatchability rate, however prolonged duration seemed to significantly reduced hatchability. All treatments with surviving progenies at the end of the study showed evidence of successfully diploid gynogen (2n = 56) induction at different percentages. However, the optimal protocol that gave a moderately high hatchability/survival rate and completely induced gynogens was exposure of the eggs to UV irradiation at 20 cm for 1 min. It was concluded that the distance and duration of UV irradiation affects gynogenetic induction in African catfish C. gariepinus.


2004 ◽  
Vol 38 ◽  
pp. 309-313 ◽  
Author(s):  
Jun Li ◽  
H. Jay Zwally

AbstractVapor-transfer theory is incorporated into a previous firn-densification model to investigate the effect of vapor-transfer processes on densification in firn within 10 m of the surface. The densification rate in the model is governed by the change of overburden pressure (determined by the accumulation rate), the firn temperature, and the temperature gradient. The time of exposure to temperature gradients at shallow depths is a critical factor determining the importance of vapor-transfer processes. In high-accumulation and high-temperature conditions such as for the Greenland ice sheet, the temperature gradient and vapor transfer are less important due to the shorter exposure times. The high summer temperatures dominate the rate of densification and annual variations in density. In low-accumulation and low-temperature conditions, such as for inland Antarctica, the vapor transfer driven by the temperature gradient has a stronger effect on the densification rate, and temperature-driven processes are less important. These factors determine both the rate of density increase with depth and the amplitudes of annual variations in density with depth.


2021 ◽  
Author(s):  
Giorgia Camperio ◽  
Caroline Welte ◽  
S. Nemiah Ladd ◽  
Matthew Prebble ◽  
Nathalie Dubois

<p>Espiritu Santo is one of the 82 islands of the archipelago of Vanuatu and is the largest, highest, and most biodiverse of the insular country. Climatic changes linked to El Niño and extreme events such as cyclones and volcanic eruptions are a daily challenge in this remote area. These events can be recorded in sedimentary archives. Here we present a multi-proxy investigation of sediment cores retrieved from two small lakes located on the West coast of Espiritu Santo. Although the records span the last millennium, high-resolution radiocarbon dating of macrofossils reveals a rapid accumulation of sediment in the past 100 years. The high accumulation rate coupled with the high-resolution dating of freshwater sediments allows us to compare the <sup>14</sup>C bomb curve with the biogeochemical proxies of the sedimentary records. The results can then be validated against written and oral historical records linked with the societal perception of recent environmental changes in this vulnerable ecosystem.</p><div> <div title="Translate selected text"></div> <div title="Play"></div> <div title="Copy text to Clipboard"></div> </div>


2002 ◽  
Vol 751 ◽  
Author(s):  
T. Horiuchi ◽  
H. Ochi ◽  
K. Kaisei ◽  
K. Ishida ◽  
K. Matsushige

ABSTRACTSurface lattice displacements of titanium dioxide (TiO2: rutile) during ultra-violet (UV) light irradiation have been investigated using a total reflection x-ray diffraction, which provides a high signal to noise ratio (S/N) and superior in-plane surface diffraction. Under the environments in vapors of H2O, CH3OH, C2H5OH and C3H6OH, the photo-catalytic activities of TiO2 (110), (100) and (001) surfaces subject to UV irradiation have been measured. It is found that the diffraction peaks and their full width half maxima (FWHMs) show some peculiarities with respect to the photo-catalytic activities in both surface lattices and adsorbed molecules in vapors. Furthermore, Kelvin force microscopy (KFM) has showed that there exists a very high surface potential, probably due to surface atom displacements induced by UV irradiation. With regard to the origin of the photo-catalytic activities, the induced surface potentials are discussed.


2004 ◽  
Vol 39 ◽  
pp. 175-180 ◽  
Author(s):  
Veijo Allan Pohjola ◽  
Jim Hedfors ◽  
Per Holmlund

AbstractHow well can we estimate the incoming ice flux by calculating the ice flux through a well-defined cross-section? We test this by comparing calculated ice flux out from the small glacier Bonnevie-Svendsenbreen with the measured accumulation rate integrated over the well-defined catchment area in the Sivorgfjella plateau, Dronning Maud Land, Antarctica (74˚45’ S, 11˚10’ W). The ice flux is calculated using ice-dynamical properties from an ice temperature model and the distribution of forces calculated using a force-budget model. The input we use includes velocity data of the glacier surface, combined with ice-thickness measurements. The result is an accumulation rate on the Sivorgfjella plateau of 0.50 ± 0.05 mw.e. a–1. We find that this is similar to the accumulation rate recorded by ground-penetrating radar work in the area. We therefore find the balance-flow method, in combination with the force-budget technique and ice temperature modeling, to be a useful tool for studies of mass fluxes in a catchment area. The most important source of uncertainty in these calculations is the quality and the spatial distribution of the ice surface velocity data. The high accumulation rate shows the effect of orographic enhancement on accumulation in montane areas in Antarctica.


2015 ◽  
Vol 12 (23) ◽  
pp. 7057-7070 ◽  
Author(s):  
E. D. Schulze ◽  
E. Lapshina ◽  
I. Filippov ◽  
I. Kuhlmann ◽  
D. Mollicone

Abstract. Here we investigate the vegetation history and peat accumulation at the eastern boarder of the West Siberian Plain, near the Yenisey River, south of permafrost. In this region, peat started to accumulate 15 000 years ago as gyttja of shallow lakes in ancient river valleys. This peat is older than previously reported, mainly due to separating particulate organic carbon (POC) from dissolved organic carbon (DOC), which was 1900–6500 years younger than POC. The probability of finding peat layers older than 12 000 years is about 2 %. Peat accumulated as fen peat at a constant rate of 0.2 mm yr−1 and 0.01 kg C m−2 yr−1. The accumulation was higher in ancient river valley environments. Over the last 2000 years these bogs changed into Sphagnum mires which have accumulated up to about 0.1 kg C m−2 yr−1 until present. The long-lasting fen stage, which makes the Yenisey bogs distinct from the western Siberian bogs, is discussed as a consequence of the local hydrology. The high accumulation rate of peat in unfrozen mires is taken as an indication that thawing of permafrost peat may also change northern peatlands into long-lasting carbon sinks.


Sign in / Sign up

Export Citation Format

Share Document