An efficient integration of the genetic algorithm and the reinforcement learning for optimal deployment of the wireless charging electric tram system

2019 ◽  
Vol 128 ◽  
pp. 851-860 ◽  
Author(s):  
Young Dae Ko
Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 471
Author(s):  
Jai Hoon Park ◽  
Kang Hoon Lee

Designing novel robots that can cope with a specific task is a challenging problem because of the enormous design space that involves both morphological structures and control mechanisms. To this end, we present a computational method for automating the design of modular robots. Our method employs a genetic algorithm to evolve robotic structures as an outer optimization, and it applies a reinforcement learning algorithm to each candidate structure to train its behavior and evaluate its potential learning ability as an inner optimization. The size of the design space is reduced significantly by evolving only the robotic structure and by performing behavioral optimization using a separate training algorithm compared to that when both the structure and behavior are evolved simultaneously. Mutual dependence between evolution and learning is achieved by regarding the mean cumulative rewards of a candidate structure in the reinforcement learning as its fitness in the genetic algorithm. Therefore, our method searches for prospective robotic structures that can potentially lead to near-optimal behaviors if trained sufficiently. We demonstrate the usefulness of our method through several effective design results that were automatically generated in the process of experimenting with actual modular robotics kit.


2021 ◽  
Vol 01 ◽  
Author(s):  
Ying Li ◽  
Chubing Guo ◽  
Jianshe Wu ◽  
Xin Zhang ◽  
Jian Gao ◽  
...  

Background: Unmanned systems have been widely used in multiple fields. Many algorithms have been proposed to solve path planning problems. Each algorithm has its advantages and defects and cannot adapt to all kinds of requirements. An appropriate path planning method is needed for various applications. Objective: To select an appropriate algorithm fastly in a given application. This could be helpful for improving the efficiency of path planning for Unmanned systems. Methods: This paper proposes to represent and quantify the features of algorithms based on the physical indicators of results. At the same time, an algorithmic collaborative scheme is developed to search the appropriate algorithm according to the requirement of the application. As an illustration of the scheme, four algorithms, including the A-star (A*) algorithm, reinforcement learning, genetic algorithm, and ant colony optimization algorithm, are implemented in the representation of their features. Results: In different simulations, the algorithmic collaborative scheme can select an appropriate algorithm in a given application based on the representation of algorithms. And the algorithm could plan a feasible and effective path. Conclusion: An algorithmic collaborative scheme is proposed, which is based on the representation of algorithms and requirement of the application. The simulation results prove the feasibility of the scheme and the representation of algorithms.


1995 ◽  
Vol 3 (2) ◽  
pp. 149-175 ◽  
Author(s):  
Stewart W. Wilson

In many classifier systems, the classifier strength parameter serves as a predictor of future payoff and as the classifier's fitness for the genetic algorithm. We investigate a classifier system, XCS, in which each classifier maintains a prediction of expected payoff, but the classifier's fitness is given by a measure of the prediction's accuracy. The system executes the genetic algorithm in niches defined by the match sets, instead of panmictically. These aspects of XCS result in its population tending to form a complete and accurate mapping X × A → P from inputs and actions to payoff predictions. Further, XCS tends to evolve classifiers that are maximally general, subject to an accuracy criterion. Besides introducing a new direction for classifier system research, these properties of XCS make it suitable for a wide range of reinforcement learning situations where generalization over states is desirable.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Tomás de Jesús Mateo Sanguino ◽  
Jhon Carlos Mendoza Betancourt

Communication infrastructure planning is a critical design task that typically requires handling complex concepts on networking aimed at optimizing performance and resources, thus demanding high analytical and problem-solving skills to engineers. To reduce this gap, this paper describes an optimization algorithm—based on evolutionary strategy—created as an aid for decision-making prior to the real deployment of wireless LANs. The developed algorithm allows automating the design process, traditionally handmade by network technicians, in order to save time and cost by improving the WLAN arrangement. To this end, we implemented a multiobjective genetic algorithm (MOGA) with the purpose of meeting two simultaneous design objectives, namely, to minimize the number of APs while maximizing the coverage signal over a whole planning area. Such approach provides efficient and scalable solutions closer to the best network design, so that we integrated the developed algorithm into an engineering tool with the goal of modelling the behavior of WLANs in ICT infrastructures. Called WiFiSim, it allows the investigation of various complex issues concerning the design of IEEE 802.11-based WLANs, thereby facilitating design of the study and design and optimal deployment of wireless LANs through complete modelling software. As a result, we comparatively evaluated three target applications considering small, medium, and large scenarios with a previous approach developed, a monoobjective genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document