Novel additively manufactured bio-inspired 3D structures for impact energy damping

CIRP Annals ◽  
2021 ◽  
Author(s):  
Georgios Maliaris ◽  
Apostolos Argyros ◽  
Emmanouil Smyrnaios ◽  
Nikolaos Michailidis
Keyword(s):  
2018 ◽  
Vol 115 (4) ◽  
pp. 407 ◽  
Author(s):  
Annika Eggbauer Vieweg ◽  
Gerald Ressel ◽  
Peter Raninger ◽  
Petri Prevedel ◽  
Stefan Marsoner ◽  
...  

Induction heating processes are of rising interest within the heat treating industry. Using inductive tempering, a lot of production time can be saved compared to a conventional tempering treatment. However, it is not completely understood how fast inductive processes influence the quenched and tempered microstructure and the corresponding mechanical properties. The aim of this work is to highlight differences between inductive and conventional tempering processes and to suggest a possible processing route which results in optimized microstructures, as well as desirable mechanical properties. Therefore, the present work evaluates the influencing factors of high heating rates to tempering temperatures on the microstructure as well as hardness and Charpy impact energy. To this end, after quenching a 50CrMo4 steel three different induction tempering processes are carried out and the resulting properties are subsequently compared to a conventional tempering process. The results indicate that notch impact energy raises with increasing heating rates to tempering when realizing the same hardness of the samples. The positive effect of high heating rate on toughness is traced back to smaller carbide sizes, as well as smaller carbide spacing and more uniform carbide distribution over the sample.


Alloy Digest ◽  
2016 ◽  
Vol 65 (11) ◽  

Abstract N-A-XTRA M800 is a quenched and tempered structural steel produced as heavy plates. N-A-XTRA steel can be supplied in six different grades with a minimum yield strength of 550, 620, 700 and 800 MPa (79.8, 89.9, 101.5 and 116.0 ksi). Some grades are delivered with different toughness properties. This last quality is for low service temperature with minimum impact energy at -40 deg C (-40 deg F) for grade N-A-XTRA M in a thickness range from 3 to 120 mm (0.118 to 4.724 in.). This datasheet provides information on composition and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-771. Producer or source: ThyssenKrupp Steel Europe AG.


Alloy Digest ◽  
2016 ◽  
Vol 65 (4) ◽  

Abstract N-A-XTRA M620 is a quenched and tempered structural steel produced as heavy plates. N-A-XTRA steel can be supplied in six different grades with a minimum yield strength of 550, 620, and 700 MPa (79.8, 89.9, and 101.5 ksi). Some grades are delivered with different toughness properties. This quality shown in this datasheet is for low service temperature with minimum impact energy at -40 deg C (-40 deg F) for grade N-A-XTRA M in a thickness range from 3 to 120 mm (0.118 to 4.724 in.). This datasheet provides information on composition and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, and joining. Filing Code: SA-746. Producer or source: ThyssenKrupp Steel Europe AG.


2020 ◽  
pp. 28-32
Author(s):  
V.S. Vanaev

Development of complex determination of parameters of jackhammers at bench tests is studied. The modern support of tests of jackhammers for the purpose of definition of their energy, vibration and noise indicators is considered. Descriptions of the SORP universal bench and UIPU measuring complex are given. Keywords jackhammer, bench, tests, processing object, energy indicators, impact energy, dynamic indicators [email protected]


2020 ◽  
Vol 26 (42) ◽  
pp. 7537-7554 ◽  
Author(s):  
Juan Zeng ◽  
Zunnan Huang

Background: The rapidly increasing number of known protein sequences calls for more efficient methods to predict the Three-Dimensional (3D) structures of proteins, thus providing basic knowledge for rational drug design. Understanding the folding mechanism of proteins is valuable for predicting their 3D structures and for designing proteins with new functions and medicinal applications. Levinthal’s paradox is that although the astronomical number of conformations possible even for proteins as small as 100 residues cannot be fully sampled, proteins in nature normally fold into the native state within timescales ranging from microseconds to hours. These conflicting results reveal that there are factors in organisms that can assist in protein folding. Methods: In this paper, we selected a crowded cell-like environment and temperature, and the top three Posttranslational Modifications (PTMs) as examples to show that Levinthal’s paradox does not reflect the folding mechanism of proteins. We then revealed the effects of these factors on protein folding. Results: The results summarized in this review indicate that a crowded cell-like environment, temperature, and the top three PTMs reshape the Free Energy Landscapes (FELs) of proteins, thereby regulating the folding process. The balance between entropy and enthalpy is the key to understanding the effect of the crowded cell-like environment and PTMs on protein folding. In addition, the stability/flexibility of proteins is regulated by temperature. Conclusion: This paper concludes that the cellular environment could directly intervene in protein folding. The long-term interactions of the cellular environment and sequence evolution may enable proteins to fold efficiently. Therefore, to correctly understand the folding mechanism of proteins, the effect of the cellular environment on protein folding should be considered.


Sign in / Sign up

Export Citation Format

Share Document