Generation of safe tool-path for 2.5D milling/drilling machine-tool using 3D ToF sensor

2015 ◽  
Vol 10 ◽  
pp. 84-91 ◽  
Author(s):  
Rafiq Ahmad ◽  
Peter Plapper
Author(s):  
Hongwei Liu ◽  
Rui Yang ◽  
Pingjiang Wang ◽  
Jihong Chen ◽  
Hua Xiang

The objective of this research is to develop a novel correction mechanism to reduce the fluctuation range of tools in numerical control (NC) machining. Error compensation is an effective method to improve the machining accuracy of a machine tool. If the difference between two adjacent compensation data is too large, the fluctuation range of the tool will increase, which will seriously affect the surface quality of the machined parts in mechanical machining. The methodology used in compensation data processing is a simplex method of linear programming. This method reduces the fluctuation range of the tool and optimizes the tool path. The important aspect of software error compensation is to modify the initial compensation data by using an iterative method, and then the corrected tool path data are converted into actual compensated NC codes by using a postprocessor, which is implemented on the compensation module to ensure a smooth running path of the tool. The generated, calibrated, and amended NC codes were immediately fed to the machine tool controller. This technique was verified by using repeated measurements. The results of the experiments demonstrate efficient compensation and significant improvement in the machining accuracy of the NC machine tool.


Author(s):  
Jui-Jen Chou ◽  
D. C. H. Yang

Abstract In the integration of CAD and CAM, it is necessary to relate machine tool kinematics and control in a CAM process to the geometrical data in a CAD model. The data stored in a CAD model is usually static in nature and represented by unitless parameters. Yet, in machine tool motion and control, the data should be transformed into a time dependent domain. In this paper, a general theory on the conversion from desired paths to motion trajectory is analytically derived. The geometrical properties of a desired path, including position, tangent, and curvature are related to the kinematics of coordinated motion including feedrate, acceleration, and jerk. As a result, the motion commands used as control references to track arbitrary space curves for five-axis computer-controlled machines can be generated in a rather straight-forward as well as systematic way.


Author(s):  
James A. Stori ◽  
Paul K. Wright

Abstract Within the Integrated Design And Manufacturing Environment (IMADE), operation planning provides a mapping from geometric design primitives to machining operation sequences for manufacturing processes. Operation planning includes tool selection, machining parameter selection, and tool path generation. An object oriented approach to program structure is adopted, whereby features, operations and tools, inherit behaviors and attributes from the appropriate class-hierarchies for the part, the manufacturing operations, and tooling classes. A detailed example is presented illustrating the operation planning search algorithm. Scripts are generated by the individual machining operations for execution on a machine tool. Tooling information is maintained in an object-oriented database through the FAR libraries for Common LISP. Examples of particular process plans show that the inherent trade-offs between specified precision and machining time can be investigated. An Open Architecture Machine Tool (MOSAIC-PM) has been used to machine the parts created by the feature based design and planning system. The novel contributions of this paper relate to the demonstration of “seamless” links between, a) design, b) planning, and c) actual fabrication by milling.


2016 ◽  
Vol 686 ◽  
pp. 119-124 ◽  
Author(s):  
Balázs Mikó

The machining of free form surfaces is a current and important issue in die and mould industry. Beside the complex geometry, an accurate and productive machining and good surface quality are needed. The finishing milling carried out by a ball-end or toroid milling cutter defines the surface quality, which is characterized by the surface roughness and the tool path trace. The surface quality is defined by the properties of the milling cutter, the type of surface and its position, as well as the cutting parameters. This article focuses on the z-level milling of steep surfaces by 2.5D milling strategy. The importance of the different elements of the tool path is presented, the effect of cutting parameters is investigated, and a formula to predict the surface roughness is suggested.


Author(s):  
Adam Jacso ◽  
Tibor Szalay ◽  
Juan Carlos Jauregui ◽  
Juvenal Rodriguez Resendiz

Many applications are available for the syntactic and semantic verification of NC milling tool paths in simulation environments. However, these solutions – similar to the conventional tool path generation methods – are generally based on geometric considerations, and for that reason they cannot address varying cutting conditions. This paper introduces a new application of a simulation algorithm that is capable of producing all the necessary geometric information about the machining process in question for the purpose of further technological analysis. For performing such an analysis, an image space-based NC simulation algorithm is recommended, since in the case of complex tool paths it is impossible to provide an analytical description of the process of material removal. The information obtained from the simulation can be used not only for simple analyses, but also for optimisation purposes with a view to increasing machining efficiency.


2012 ◽  
Vol 472-475 ◽  
pp. 2717-2721 ◽  
Author(s):  
Rajiv Kumar ◽  
Mohinder Pal Garg ◽  
Rakesh C. Sharma

Manufacturing industries now a days have stringent expectation from the machine tools in terms of productivity as well as quality of products.Vibration plays an important role in determining the quality of product.If the pattern of vibration prevailing in the machine tool during cutting is known,then machine tool structure can be designed in such a way so that natural frequency of machine tool structure can be isolated from the forced frequency.So, this study is focused on finding the natural frequency and mode shapes of radial drilling machine structure.Finite element analysis has been done to find out the natural frequencies and mode shapes of radial drilling machine structure.Assembled mass and stiffness matrices are obtained for each element and solved by using inverse iteration technique.


2011 ◽  
Vol 697-698 ◽  
pp. 309-313 ◽  
Author(s):  
Chen Hua She ◽  
Yueh Hsun Tsai

Designs of free-form surface products are becoming increasingly complex. In traditional three-axis machine tool machining, errors that are caused by repetitive positioning and the costs of fixture jig design and manufacturing are critical. Since multi-axis machining provides two more rotational degrees of freedom than a three-axis machine tool, the former can solve these problems, and has therefore become the trend of precision cutting. As multi-axis machined parts often have holes and grooves on the tilted plane, this work proposes a method for machining tilted working plane features and for NC generation on a five-axis machine. The developed module can provide common geometric features, allowing the user to alter the machining feature and sequence on the tilted plane quickly using the parent-child relationship in a tree diagram, and plan the tool path. The postprocessor module developed in this paper can transform the tool path into an NC program required for machining. Finally, solid cutting simulation software is utilized to confirm the feasibility and correctness of the tool path and NC data of the tilted plane machining feature.


2010 ◽  
Vol 156-157 ◽  
pp. 1238-1242
Author(s):  
Kui Zhou ◽  
Si Tu Yu ◽  
Shi De Xiao

According to the motion characteristics of 4-axis CNC machine tool, this paper studies a new way for manufacturing the mushroom turbine blade boot .It must rotate the turbine blade to ensure the tool axis consistent with the normal of the interpolating point on the arc of the blade boot, and move the tool to keep the cutting point in contact with the interpolating point. Meanwhile, this paper researches an algorithm to calculate the tool path in the MCS, According to this algorithm, a program with R variable parameter for manufacturing the mushroom turbine blade boot is provided.


Sign in / Sign up

Export Citation Format

Share Document