Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation

2018 ◽  
Vol 251 ◽  
pp. 80-96 ◽  
Author(s):  
Krassimir D. Danov ◽  
Mihail T. Georgiev ◽  
Peter A. Kralchevsky ◽  
Gergana M. Radulova ◽  
Theodor D. Gurkov ◽  
...  
2021 ◽  
pp. 1-26
Author(s):  
Titus Ntow Ofei ◽  
Bjørnar Lund ◽  
Arild Saasen ◽  
Sigbjorn Sangesland

Abstract Drilling fluids for oilfield use consist of complex mixtures of natural and synthetic materials. The viscous properties along with the particle size distribution of the applied weight materials are vital in controlling the stability of the microstructure and density of the drilling fluid. Typical oil-based drilling fluids made for North Sea oilfield drilling application with oil-water-ratios (OWR) of 80/20 and 60/40 are examined with respect to their density stability. The stability was analyzed both at rest and at dynamic conditions using flow and viscosity tests, oscillatory sweep tests, creep tests, and time-dependent oscillatory sweep tests using a scientific rheometer with a measuring system applying a grooved bob at atmospheric conditions. The quantities used in ranking the stability of the fluids include the yield stress, flow transition index, mechanical storage stability index, and dynamic sag index. We observed that the drilling fluid sample with OWR=60/40 showed a more stable dispersion with a stronger structure having higher yield stress and flow transition index values, while the mechanical storage stability index and dynamic sag index recorded lower values. Furthermore, the Herschel-Bulkley parameters for yield stress and consistency index increased in fluid with OWR=60/40, whereas the flow index values for both fluid samples were similar. The results of this study enable drilling fluid engineers to design realistic oil-based drilling fluids with stable microstructure to mitigate weigh material settling and sag of particles for North Sea drilling operation.


1995 ◽  
Vol 32 (2) ◽  
pp. 263-270 ◽  
Author(s):  
Philippe Coussot ◽  
Jean-Michel Piau

This study provides some elements for understanding the behavior of water–debris mixtures containing clay, silt, sand, and boulders at high solid concentrations. Accurate, simple shear rheometrical results for various clay–water mixtures and fine debris flow fractions with different added sand concentrations, in the shear rate range from 10−2 to 10−2 s−1 are presented. In this shear rate range, the behavior of these fluids is similar to the behavior of the initial fluid (without sand), i.e., it may be well represented by a Herschel–Bulkley model (with a power parameter close to 1/3). With the initial fluids (yield stress from 20 to 200 Pa) the suspension yield stress increases exponentially with the increase in sand (diameter between 100 and 200 μm) concentration, as long as the latter does not exceed 30%. However the rate of increase is less than the corresponding rate for the initial fluid and is correspondingly smaller as the grain size distribution is less well sorted. Diagrams showing the increase of yield stress with solid concentration may help to estimate the yield stress of coarser suspensions as long as the solid fraction is not too close to the maximum packing fraction. Key words : clay–water suspensions, water–debris mixtures, rheology, yield stress, sand addition, rheometry.


Langmuir ◽  
2020 ◽  
Vol 36 (32) ◽  
pp. 9424-9435 ◽  
Author(s):  
Jeewon Yang ◽  
Hyun-su Park ◽  
Jieun Kim ◽  
Jihye Mok ◽  
Taeyeon Kim ◽  
...  

Author(s):  
Mesfin Belayneh ◽  
Bernt S. Aadnøy ◽  
Sharman Thomas

This paper presents the barite sagging phenomenon of four OBM systems having the same density, but different rheology properties. The investigations of barite sagging is based on dynamic sagging and viscoelasticity testing. The viscoelastic properties related to gel formation of the drilling fluids were investigated under amplitude and frequency sweeps. The study also tries to correlate the results obtained from dynamic sag with the dynamic viscoelastic properties of the drilling fluid and standard API rheology parameters. The results show that as the oil water ratio increases the drilling fluid rheology parameters such as lower shear yield stress (LSYS), yield stress (YS) and plastic viscosity (PV) parameters also increases. In addition, the viscoelastic loss and storage modulus decrease. From the viscoelasticity study, except for 90:10 OWR, it is observed that as the oil water ratio increase, the yield stress and the flow point also increases. The 90:10 OBM shows no viscoelasticity behavior. Comparing the extreme 60:40 and 90:10 OBMs (i.e. as OWR increase), the experimental result shows that the sagging index increases by 9%. The dynamic sagging factor decreases as the ratio of storage modulus to loss modulus increases (i.e. as OWR decrease). Except for high viscosity and hydraulics, the overall analysis of drilling fluids shows that the 60:40 OWR is the better in terms of sagging, filtrate loss and hole cleaning performance.


2001 ◽  
Author(s):  
Catherine Gautier
Keyword(s):  

2020 ◽  
Author(s):  
Bingqing qian ◽  
Haiqiao Wang ◽  
Dong Wang ◽  
Hao-Bin Zhang ◽  
Jessica Wu ◽  
...  

TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 145-153 ◽  
Author(s):  
Chengua Yu ◽  
Feng Wang ◽  
Shiyu Fu ◽  
Lucian Lucia

A very low-density oil-absorbing hydrophobic material was fabricated from cellulose nanofiber aerogels–coated silane substances. Nanocellulose aerogels (NCA) superabsorbents were prepared by freeze drying cellulose nanofibril dispersions at 0.2%, 0.5%, 0.8%, 1.0%, and 1.5% w/w. The NCA were hydrophobically modified with methyltrimethoxysilane. The surface morphology and wettability were characterized by scanning electron microscopy and static contact angle. The aerogels displayed an ultralow density (2.0–16.7 mg·cm-3), high porosity (99.9%–98.9%), and superhydrophobicity as evidenced by the contact angle of ~150° that enabled the aerogels to effectively absorb oil from an oil/water mixture. The absorption capacities of hydrophobic nanocellulose aerogels for waste engine oil and olive oil could be up to 140 g·g-1 and 179.1 g·g-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document