scholarly journals Agronomic performance of drought-resistance rice cultivars grown under alternate wetting and drying irrigation management in southeast China

2018 ◽  
Vol 6 (5) ◽  
pp. 482-494 ◽  
Author(s):  
Guang Chu ◽  
Tingting Chen ◽  
Song Chen ◽  
Chunmei Xu ◽  
Danying Wang ◽  
...  
Author(s):  
G.V. Venkataravana Nayaka ◽  
G. Prabhakara Reddy ◽  
R. Mahender Kumar

Background: Growth and yield characteristics of genotypes depend on genetic and environmental factors. Among the different production factors, varietal selection at any location plays an important role. Proper crop management depends on the growth characteristics of various varieties to get maximum benefit from new genetic material. Among the different water- saving irrigation methods in rice, the most widely adopted is alternate wetting and drying (AWD). Many of the rice cultivars vary in their performance under different systems of cultivation.Methods: A field experiment was conducted on a clay loam soil at Indian Institute of Rice Research (IIRR) Rajendranagar, Hyderabad, Telangana during the kharif seasons of 2017 and 2018. to study the “productivity and water use efficiency of rice cultivars under different irrigation regimes and systems of cultivation” The treatments consisted of two irrigation regimes Alternate wetting and drying and Saturation as main plot treatments, three establishment methods System of Rice Intensification (SRI), Drum Seeding (DS) and Normal transplanting (NTP) as sub plot treatments and four Cultivars namely DRR Dhan 42, DRR Dhan 43, MTU-1010 and NLR-34449 as sub-sub plot treatments summing up to 24 treatment combinations laid out in split-split plot design with three replications.Result: At 60, 90 DAS/DAT and harvest significantly dry matter production (DMP) was recorded with DRR Dhan 43 cultivar (607, 4320 and 11548 kg ha-1 respectively in pooled means of both 2017 and 2018) than other cultivars. Whereas MTU-1010 and NLR-34449 recorded on par dry matter production values at all the crop growth stages during both the years of study. However, DRR Dhan 42 produced the lowest dry matter production compared to other genotypes. DRR Dhan 43 recorded higher dry matter accumulation (g m-2) in root, stem and leaves at all the crop growth stages, during both the years of the study over other cultivars. Alternative wetting and drying method of irrigation recorded significantly higher DMP at all the growth stages of rice (60, 90 DAS/DAT and at harvest) except at 30 DAS/DAT during both 2017 and 2018 as compared to saturation. SRI recorded significantly higher DMP as compared to normal transplanting; however, it was comparably at par with drum seeding at all the growth stages.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Kristine Samoy-Pascual ◽  
Sudhir Yadav ◽  
Gio Evangelista ◽  
Mary Ann Burac ◽  
Marvelin Rafael ◽  
...  

Alternate Wetting and Drying (AWD) is a well-known low-cost water-saving and climate change adaptation and mitigation technique for irrigated rice. However, its adoption rate has been low despite the decade of dissemination in Asia, especially in the Philippines. Using cross-sectional farm-level survey data, this study empirically explored factors shaping AWD adoption in a gravity surface irrigation system. We used regression-based approaches to examine the factors influencing farmers’ adoption of AWD and its impact on yield. Results showed that the majority of the AWD adopters were farmers who practiced enforced rotational irrigation (RI) scheduling within their irrigators’ association (IA). With the current irrigation management system, the probability of AWD implementation increases when farmers do not interfere with the irrigation schedule (otherwise they opt to go with flooding). Interestingly, the awareness factor did not play a significant role in the farmers’ adoption due to the RI setup. However, the perception of water management as an effective weed control method was positively significant, suggesting that farmers are likely to adopt AWD if weeds are not a major issue in their field. Furthermore, the impact on grain yields did not differ with AWD. Thus, given the RI scheduling already in place within the IA, we recommend fine-tuning this setup following the recommended safe AWD at the IA scale.


2020 ◽  
Vol 44 (1) ◽  
pp. 1-15
Author(s):  
Ahmad Latif Virk ◽  
Muhammad Shahbaz Farooq ◽  
Ashfaq Ahmad ◽  
Tasneem Khaliq ◽  
Muhammad Ishaq Asif Rehmani ◽  
...  

2012 ◽  
Vol 126 ◽  
pp. 16-22 ◽  
Author(s):  
Fengxian Yao ◽  
Jianliang Huang ◽  
Kehui Cui ◽  
Lixiao Nie ◽  
Jing Xiang ◽  
...  

2017 ◽  
Vol 6 (3) ◽  
pp. 98-112 ◽  
Author(s):  
Gareth J. Norton ◽  
Anthony J. Travis ◽  
John M. C. Danku ◽  
David E. Salt ◽  
Mahmud Hossain ◽  
...  

Weed Science ◽  
2019 ◽  
Vol 67 (4) ◽  
pp. 453-462 ◽  
Author(s):  
David R. Gealy ◽  
Jai S. Rohila ◽  
Deborah L. Boykin

AbstractBarnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] is one of the most troublesome and competitive weed species in rice (Oryza sativa L.) grown under conventional flood (FLD) irrigation and is expected to be similarly damaging under alternate-wetting-and-drying (AWD) irrigation. Several indica rice genotypes have been shown to suppress E. crus-galli under FLD management, but very little is known about the nature and potential of weed suppression using AWD irrigation. In this 3-yr field study, we evaluated seven diverse rice genotypes for their weed suppression and grain yield potential under FLD and AWD irrigation. The E. crus-galli dry biomass at midseason was 11% less under AWD compared with FLD. Overall, plots of an indica variety and a hybrid resulted in less E. crus-galli dry biomass under AWD compared with FLD. Grain yield in weed-free AWD plots averaged 12% less than in weed-free FLD plots. Grain yield of the tropical japonica (TRJ) type, ‘Bengal’, was 32% lower under AWD than FLD, whereas grain yields of the two indica genotypes, PI 312777 and ‘Rondo’, and a hybrid were similar in both irrigation systems. Grain yield reduction in E. crus-galli–infested AWD plots averaged greater than 90%. Thus, E. crus-galli greatly reduced the grain yield of all rice genotypes tested in both FLD and AWD systems in this study. Grain yield of the indica and hybrid genotypes was relatively less affected by the AWD treatments compared with the TRJ genotypes, particularly with Bengal, suggesting that the weed-suppressive genotypes, PI 312777 and Rondo, would be better suited to AWD irrigation systems and for inclusion in weed-suppression rice-breeding programs in the southern United States.


2021 ◽  
Vol 247 ◽  
pp. 106758
Author(s):  
Komlavi Akpoti ◽  
Elliott R. Dossou-Yovo ◽  
Sander J. Zwart ◽  
Paul Kiepe

Sign in / Sign up

Export Citation Format

Share Document