Characterization of functionalized multiwalled carbon nanotubes and application as an effective filter for heavy metal removal from aqueous solutions

2016 ◽  
Vol 24 (12) ◽  
pp. 1695-1702 ◽  
Author(s):  
Emad.M. Elsehly ◽  
N.G. Chechenin ◽  
A.V. Makunin ◽  
H.A. Motaweh ◽  
E.A. Vorobyeva ◽  
...  
Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 111 ◽  
Author(s):  
Carolina Rodríguez ◽  
Eduardo Leiva

Due to the unique properties of carbon nanotubes (CNTs), they have attracted great research attention as an emergent technology in many applications including water and wastewater treatment. However, raw CNTs have few functional groups, which limits their use in heavy metal removal. Nevertheless, their removal properties can be improved by oxidation processes that modify its surface. In this study, we assessed the capacity of oxidized and double-oxidized multiwalled carbon nanotubes (MWCNTs) to remove heavy metals ions from acidic solutions. The MWCNTs were tested for copper (Cu), manganese (Mn), and zinc (Zn) removal, which showed an increment of 79%, 78%, and 48%, respectively, with double-oxidized MWCNTs compared to oxidized MWCNTs. Moreover, the increase in pH improved the sorption capacity for all the tested metals, which indicates that the sorption potential is strongly dependent on the pH. The kinetic adsorption process for three metals can be described well with a pseudo-second-order kinetic model. Additionally, in multimetallic waters, the sorption capacity decreases due to the competition between metals, and it was more evident in the removal of Zn, while Cu was less affected. Besides, XPS analysis showed an increase in oxygen-containing groups on the MWCNTs surface after oxidation. Finally, these analyses showed that the chemical interactions between heavy metals and oxygen-containing groups are the main removal mechanism. Overall, these results contribute to a better understanding of the potential use of CNTs for water treatment.


2018 ◽  
Vol 30 (7) ◽  
pp. 1613-1616 ◽  
Author(s):  
Nurjahirah Janudin ◽  
Luqman Chuah Abdullah ◽  
Norli Abdullah ◽  
Faizah M. Yasin ◽  
Norshafiqah Mohamad Saidi ◽  
...  

2018 ◽  
Vol 32 (1) ◽  
pp. 76-88 ◽  
Author(s):  
Zahra Rafiee ◽  
Milad Kolaee

The chiral poly(amide-imide) (PAI) was synthesized by the direct polycondensation reaction of imide-dicarboxylic acid, N-trimellitylimido-l-phenylalanine with diamine and 1,5-naphthalenediamine. Multiwalled carbon nanotubes (MWCNTs)/polymer composite films were prepared via dispersing of acid-functionalized MWCNTs (MWCNT-COOH) as reinforcement at MWCNT loadings of 5, 10, and 15 wt%. The PAI/MWCNT composite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy (TEM). The TEM results confirmed that the carboxylated MWCNTs were well dispersed in the polymer matrix. The thermogravimetric analysis data showed an improvement of thermal stability of composites containing the MWCNT as compared to the pure polymer. In this research, PAI/MWCNT composite 15 wt% was used as a novel and efficient adsorbent for removal of malachite green dye from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document