Effects of piperacillin synthesis on the interfacial tensions and droplet sizes

Author(s):  
Yu Xie ◽  
Guoming Huang ◽  
Weiguo Hu ◽  
Yujun Wang
2018 ◽  
Vol 55 (4) ◽  
pp. 317-324 ◽  
Author(s):  
Changming Zhao ◽  
Ling Zhang ◽  
Yue Wang ◽  
Tiexin Cheng ◽  
Wensheng Yang ◽  
...  
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Mazhar H. Tunio ◽  
Jianmin Gao ◽  
Imran A. Lakhiar ◽  
Kashif A. Solangi ◽  
Waqar A. Qureshi ◽  
...  

The atomized nutrient solution droplet sizes and spraying intervals can impact the chemical properties of the nutrient solution, biomass yield, root-to-shoot ratio and nutrient uptake of aeroponically cultivated plants. In this study, four different nozzles having droplet sizes N1 = 11.24, N2 = 26.35, N3 = 17.38 and N4 = 4.89 µm were selected and misted at three nutrient solution spraying intervals of 30, 45 and 60 min, with a 5 min spraying time. The measured parameters were power of hydrogen (pH) and electrical conductivity (EC) values of the nutrient solution, shoot and root growth, ratio of roots to shoots (fresh and dry), biomass yield and nutrient uptake. The results indicated that the N1 presented significantly lower changes in chemical properties than those of N2, N3 and N4, resulting in stable lateral root growth and increased biomass yield. Also, the root-to-shoot ratio significantly increased with increasing spraying interval using N1 and N4 nozzles. The N1 nozzle also revealed a significant effect on the phosphorous, potassium and magnesium uptake by the plants misted at proposed nutrient solution spraying intervals. However, the ultrasonic nozzle showed a nonsignificant effect on all measured parameters with respect to spraying intervals. In the last, this research experiment validates the applicability of air-assisted nozzle (N1) misting at a 30-min spraying interval and 5 min of spraying time for the cultivation of butter-head lettuce in aeroponic systems.


Author(s):  
V. Gall ◽  
E. Rütten ◽  
H. P. Karbstein

AbstractHigh-pressure homogenization is the state of the art to produce high-quality emulsions with droplet sizes in the submicron range. In simultaneous homogenization and mixing (SHM), an additional mixing stream is inserted into a modified homogenization nozzle in order to create synergies between the unit operation homogenization and mixing. In this work, the influence of the mixing stream on cavitation patterns after a cylindrical orifice is investigated. Shadow-graphic images of the cavitation patterns were taken using a high-speed camera and an optically accessible mixing chamber. Results show that adding the mixing stream can contribute to coalescence of cavitation bubbles. Choked cavitation was observed at higher cavitation numbers σ with increasing mixing stream. The influence of the mixing stream became more significant at a higher orifice to outlet ratio, where a hydraulic flip was also observed at higher σ. The decrease of cavitation intensity with increasing back-pressure was found to be identical with conventional high-pressure homogenization. In the future, the results can be taken into account in the SHM process design to improve the efficiency of droplet break-up by preventing cavitation or at least hydraulic flip.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 631
Author(s):  
Zhang Juyang ◽  
Bettina Wolf

Equal parts of sugar beet pectin and sodium caseinate were interacted through electrostatic attraction, enzymatic crosslinking, and the Maillard reaction to prepare three oil-in-water emulsifier systems. Oil-in-water emulsions (10%) were processed via high shear overhead mixing at the natural pH of the emulsifier systems, followed by pH adjustment to pH 4.5 and pH 7. The emulsions were stable against coalescence, except for a slight increase in the mean droplet size for the enzymatic cross-liked emulsion at pH 4.5 over a 14-day storage period. This emulsion also showed the lowest absolute zeta (ζ)-potential value of near 30 mV. The Maillard interaction emulsifier system resulted in larger droplet sizes compared to the other two emulsifier systems. Small deformation oscillatory shear rheology assessment of the emulsion cream phases revealed an impact of the emulsifier system design at pH 4.5.


Author(s):  
Mengdie Lv ◽  
Cong Luo ◽  
Jian Yang ◽  
Yawen Zhou ◽  
Changyao Liu ◽  
...  

Soft Matter ◽  
2016 ◽  
Vol 12 (33) ◽  
pp. 6902-6909 ◽  
Author(s):  
Wei Xu ◽  
Jian Xu ◽  
Xin Li ◽  
Ye Tian ◽  
Chang-Hwan Choi ◽  
...  

2013 ◽  
Vol 27 (6) ◽  
pp. 3122-3129 ◽  
Author(s):  
Ziyu Liu ◽  
Lei Zhang ◽  
Xulong Cao ◽  
Xinwang Song ◽  
Zhiqiang Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document