Studies on the interaction of colchicine and human serum albumin by the measurement of zeta-potential

2011 ◽  
Vol 44 (13) ◽  
pp. S267
Author(s):  
Masoomeh Vahidzadeh ◽  
Mohsen Gharanfoli ◽  
Jamshid Chamani
Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 97 ◽  
Author(s):  
Gábor Katona ◽  
György Tibor Balogh ◽  
Gergő Dargó ◽  
Róbert Gáspár ◽  
Árpád Márki ◽  
...  

The aim of this study was to optimize the formulation of meloxicam (MEL)-containing human serum albumin (HSA) nanoparticles for nose-to-brain via a quality by design (QbD) approach. Liquid and dried formulations of nanoparticles containing Tween 80 and without the surfactant were investigated. Various properties, such as the Z-average, zeta potential, encapsulation efficacy (EE), conjugation of MEL and HSA, physical stability, in vitro dissolution, in vitro permeability, and in vivo plasma and brain distribution of MEL were characterized. From a stability point of view, a solid product (Mel-HSA-Tween) is recommended for further development since it met the desired critical parameters (176 ± 0.3 nm Z-average, 0.205 ± 0.01 PdI, −14.1 ± 0.7 mV zeta potential) after 6 months of storage. In vitro examination showed a significantly increased drug dissolution and permeability of MEL-containing nanoparticles, especially in the case of applying Tween 80. The in vivo studies confirmed both the trans-epithelial and axonal transport of nanoparticles, and a significantly higher cerebral concentration of MEL was detected with nose-to-brain delivery, in comparison with intravenous or per os administration. These results indicate intranasal the administration of optimized MEL-containing HSA formulations as a potentially applicable “value-added” product for the treatment of neuroinflammation.


2012 ◽  
Vol 41 (10) ◽  
pp. 1777-1801 ◽  
Author(s):  
Behnaz Bakaeean ◽  
Mona Kabiri ◽  
Hedieh Iranfar ◽  
Mohammad Reza Saberi ◽  
Jamshidkhan Chamani

2017 ◽  
Vol 242 ◽  
pp. 1018-1026 ◽  
Author(s):  
Otávio Augusto Chaves ◽  
Bijo Mathew ◽  
Dari Cesarin-Sobrinho ◽  
Balasubramanian Lakshminarayanan ◽  
Monu Joy ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
pp. 51
Author(s):  
Małgorzata Nattich-Rak ◽  
Maria Dąbkowska ◽  
Zbigniew Adamczyk

Human serum albumin (HSA) layers are adsorbed on mica under controlled diffusion transport at pH 3.5 and various ionic strengths. The surface concentration of HSA is directly determined by AFM imaging of single molecules. It is shown that the adsorption kinetics derived in this way is quantitatively described using the random sequential (RSA) adsorption model. The electrokinetic characteristics of the HSA layers at various pHs comprising their zeta potential are acquired in situ while using the streaming potential method. It is shown that at pH 3.5 the zeta potential of mica becomes positive for HSA concentrations above 3000 μm−2. At larger pHs, HSA layers exhibit negative zeta potential for the entire range of coverage. Thorough characteristics of these monolayers at various pHs were performed applying the colloid deposition method involving negatively charged polystyrene microparticles. The kinetics of their deposition and their maximum coverage are determined as a function of the HSA layer surface concentration, pH, and ionic strength. An anomalous deposition of microparticles on substrates also exhibiting a negative zeta potential is observed, which contradicts the Derjaguin, Landau, Vervey, Overbeek (DLVO) theory. This effect is interpreted in terms of heterogeneous charge distribution that results from molecule concentration fluctuations. It is also shown that the maximum concentration of microparticles abruptly decreases with the electric double-layer thickness that is regulated by changing ionic strength, which indicates that their deposition is governed by electrostatic interactions. One can argue that the results obtained in this work can be exploited as useful reference data for the analysis of deposition phenomena of bioparticles on protein layers.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1017 ◽  
Author(s):  
Tatiana V. Plisko ◽  
Alexandr V. Bildyukevich ◽  
Katsiaryna S. Burts ◽  
Sergey S. Ermakov ◽  
Anastasia V. Penkova ◽  
...  

A novel method for one-step preparation of antifouling ultrafiltration membranes via a non-solvent induced phase separation (NIPS) technique is proposed. It involves using aqueous 0.05–0.3 wt.% solutions of cationic polyelectrolyte based on a copolymer of acrylamide and 2-acryloxyethyltrimethylammonium chloride (Praestol 859) as a coagulant in NIPS. A systematic study of the effect of the cationic polyelectrolyte addition to the coagulant on the structure, performance and antifouling stability of polysulfone membranes was carried out. The methods for membrane characterization involved scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), contact angle and zeta-potential measurements and evaluation of the permeability, rejection and antifouling performance in human serum albumin solution and surface water ultrafiltration. It was revealed that in the presence of cationic polyelectrolyte in the coagulation bath, its concentration has a major influence on the rate of “solvent–non-solvent” exchange and thus also on the rate of phase separation which significantly affects membrane structure. The immobilization of cationic polyelectrolyte macromolecules into the selective layer was confirmed by FTIR spectroscopy. It was revealed that polyelectrolyte macromolecules predominately immobilize on the surface of the selective layer and not on the bottom layer. Membrane modification was found to improve the hydrophilicity of the selective layer, to increase surface roughness and to change zeta-potential which yields the substantial improvement of membrane antifouling stability toward natural organic matter and human serum albumin.


2020 ◽  
Vol 27 ◽  
Author(s):  
Hamid Tanzadehpanah ◽  
Hanie Mahaki ◽  
Mohammadreza Moradi ◽  
Saeid Afshar ◽  
Neda Hosseinpour Moghadam ◽  
...  

Background: Interactions of drugs with DNA and proteins may modify their biological activities and conformations, which effect transport and biological metabolism of drugs. Objective: In this study the interaction of anticancer drug regorafenib (REG) with calf thymus-DNA (ct-DNA) and human serum albumin (HSA) has been investigated. Methods: Hence, for the first time, it was discovered interaction between REG with DNA and HSA using multispectroscopic, zeta potential measurements and molecular docking method. Results and Discussion: DNA displacement studies showed that REG does not have any effect on acridine orange and methylene blue bound DNA, though it was substantiated by displacement studies with Hoechst (as groove binder). Furthermore, the different concentrations of REG induce slight changes in the viscosity of ct-DNA. Zeta potential parameters indicated that hydrophobic interaction plays a major role in the DNA-REG complex. Results obtained from molecular docking demonstrate that the REG prefers to bind on the minor groove of DNAs than that of the major groove. Binding properties of HSA reveal that intrinsic fluorescence of HSA could be quenched by REG in a static mode. The competitive experiments in the presence of warfarin and ibuprofen (as site markers) suggested that the binding site of REG to HSA was most probably located in the subdomain IIA. Measurements of the zeta potential indicated that REG bound to HSA mainly by both electrostatic and hydrophobic interactions. It was found on docking procedures that REG could fit well into HSA subdomain IIA, which confirmed the experimental results. Conclusion: In conclusion, REG can be delivered by HSA in a circulatory system and affect DNA as potential target.


Sign in / Sign up

Export Citation Format

Share Document