scholarly journals One-Step Preparation of Antifouling Polysulfone Ultrafiltration Membranes via Modification by a Cationic Polyelectrolyte Based on Polyacrylamide

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1017 ◽  
Author(s):  
Tatiana V. Plisko ◽  
Alexandr V. Bildyukevich ◽  
Katsiaryna S. Burts ◽  
Sergey S. Ermakov ◽  
Anastasia V. Penkova ◽  
...  

A novel method for one-step preparation of antifouling ultrafiltration membranes via a non-solvent induced phase separation (NIPS) technique is proposed. It involves using aqueous 0.05–0.3 wt.% solutions of cationic polyelectrolyte based on a copolymer of acrylamide and 2-acryloxyethyltrimethylammonium chloride (Praestol 859) as a coagulant in NIPS. A systematic study of the effect of the cationic polyelectrolyte addition to the coagulant on the structure, performance and antifouling stability of polysulfone membranes was carried out. The methods for membrane characterization involved scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), contact angle and zeta-potential measurements and evaluation of the permeability, rejection and antifouling performance in human serum albumin solution and surface water ultrafiltration. It was revealed that in the presence of cationic polyelectrolyte in the coagulation bath, its concentration has a major influence on the rate of “solvent–non-solvent” exchange and thus also on the rate of phase separation which significantly affects membrane structure. The immobilization of cationic polyelectrolyte macromolecules into the selective layer was confirmed by FTIR spectroscopy. It was revealed that polyelectrolyte macromolecules predominately immobilize on the surface of the selective layer and not on the bottom layer. Membrane modification was found to improve the hydrophilicity of the selective layer, to increase surface roughness and to change zeta-potential which yields the substantial improvement of membrane antifouling stability toward natural organic matter and human serum albumin.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5740
Author(s):  
Tatiana Plisko ◽  
Yana Karslyan ◽  
Alexandr Bildyukevich

This study deals with the modification of polyphenylsulfone ultrafiltration membranes by introduction of an incompatible polymer polysulfone to the polyphenylsulfone casting solution to improve the permeability. The correlation between properties of the blend polyphenylsulfone/polysulfone solutions and porous anisotropic membranes for ultrafiltration prepared from these solutions was revealed. The blend polyphenylsulfone/polysulfone solutions were investigated using a turbidity spectrum method, optical microscopy and measurements of dynamic viscosity and turbidity. The structure of the prepared blend flat sheet membranes was studied using scanning electron microscopy. Membrane separation performance was investigated in the process of ultrafiltration of human serum albumin buffered solutions. It was found that with the introduction of polysulfone to the polyphenylsulfone casting solution in N-methyl-2-pyrrolidone the size of supramolecular particles significantly increases with the maximum at (40–60):(60:40) polyphenylsulfone:polysulfone blend ratio from 76 nm to 196–354 nm. It was shown that polyphenylsulfone/polysulfone blend solutions, unlike the solutions of pristine polymers, are two-phase systems (emulsions) with the maximum droplet size and highest degree of polydispersity at polyphenylsulfone/polysulfone blend ratios (30–60):(70–40). Pure water flux of the blend membranes passes through a maximum in the region of the most heterogeneous structure of the casting solution, which is associated with the imposition of a polymer-polymer phase separation on the non-solvent induced phase separation upon membrane preparation. The application of polyphenylsulfone/polysulfone blends as membrane-forming polymers and polyethylene glycol (Mn = 400 g·mol−1) as a pore-forming agent to the casting solutions yields the formation of ultrafiltration membranes with high membrane pure water flux (270 L·m−2·h−1 at 0.1MPa) and human serum albumin rejection of 85%.


2011 ◽  
Vol 44 (13) ◽  
pp. S267
Author(s):  
Masoomeh Vahidzadeh ◽  
Mohsen Gharanfoli ◽  
Jamshid Chamani

Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 97 ◽  
Author(s):  
Gábor Katona ◽  
György Tibor Balogh ◽  
Gergő Dargó ◽  
Róbert Gáspár ◽  
Árpád Márki ◽  
...  

The aim of this study was to optimize the formulation of meloxicam (MEL)-containing human serum albumin (HSA) nanoparticles for nose-to-brain via a quality by design (QbD) approach. Liquid and dried formulations of nanoparticles containing Tween 80 and without the surfactant were investigated. Various properties, such as the Z-average, zeta potential, encapsulation efficacy (EE), conjugation of MEL and HSA, physical stability, in vitro dissolution, in vitro permeability, and in vivo plasma and brain distribution of MEL were characterized. From a stability point of view, a solid product (Mel-HSA-Tween) is recommended for further development since it met the desired critical parameters (176 ± 0.3 nm Z-average, 0.205 ± 0.01 PdI, −14.1 ± 0.7 mV zeta potential) after 6 months of storage. In vitro examination showed a significantly increased drug dissolution and permeability of MEL-containing nanoparticles, especially in the case of applying Tween 80. The in vivo studies confirmed both the trans-epithelial and axonal transport of nanoparticles, and a significantly higher cerebral concentration of MEL was detected with nose-to-brain delivery, in comparison with intravenous or per os administration. These results indicate intranasal the administration of optimized MEL-containing HSA formulations as a potentially applicable “value-added” product for the treatment of neuroinflammation.


2012 ◽  
Vol 41 (10) ◽  
pp. 1777-1801 ◽  
Author(s):  
Behnaz Bakaeean ◽  
Mona Kabiri ◽  
Hedieh Iranfar ◽  
Mohammad Reza Saberi ◽  
Jamshidkhan Chamani

2017 ◽  
Vol 242 ◽  
pp. 1018-1026 ◽  
Author(s):  
Otávio Augusto Chaves ◽  
Bijo Mathew ◽  
Dari Cesarin-Sobrinho ◽  
Balasubramanian Lakshminarayanan ◽  
Monu Joy ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
pp. 51
Author(s):  
Małgorzata Nattich-Rak ◽  
Maria Dąbkowska ◽  
Zbigniew Adamczyk

Human serum albumin (HSA) layers are adsorbed on mica under controlled diffusion transport at pH 3.5 and various ionic strengths. The surface concentration of HSA is directly determined by AFM imaging of single molecules. It is shown that the adsorption kinetics derived in this way is quantitatively described using the random sequential (RSA) adsorption model. The electrokinetic characteristics of the HSA layers at various pHs comprising their zeta potential are acquired in situ while using the streaming potential method. It is shown that at pH 3.5 the zeta potential of mica becomes positive for HSA concentrations above 3000 μm−2. At larger pHs, HSA layers exhibit negative zeta potential for the entire range of coverage. Thorough characteristics of these monolayers at various pHs were performed applying the colloid deposition method involving negatively charged polystyrene microparticles. The kinetics of their deposition and their maximum coverage are determined as a function of the HSA layer surface concentration, pH, and ionic strength. An anomalous deposition of microparticles on substrates also exhibiting a negative zeta potential is observed, which contradicts the Derjaguin, Landau, Vervey, Overbeek (DLVO) theory. This effect is interpreted in terms of heterogeneous charge distribution that results from molecule concentration fluctuations. It is also shown that the maximum concentration of microparticles abruptly decreases with the electric double-layer thickness that is regulated by changing ionic strength, which indicates that their deposition is governed by electrostatic interactions. One can argue that the results obtained in this work can be exploited as useful reference data for the analysis of deposition phenomena of bioparticles on protein layers.


1979 ◽  
Vol 181 (3) ◽  
pp. 779-781 ◽  
Author(s):  
D W Hutchinson ◽  
D S Mutopo

A one-step procedure has been developed for the preparation of [3H]bilirubin IX-alpha in good yield from unlabelled bilirubin. Irradiation of an aqueous solution of [3H]bilirubin IX-alpha in the presence of human serum albumin results in the covalent attachment of the bilirubin to the protein. Preliminary degradation studies have been carried out to locate the site of attachment of the bilirubin to the albumin.


Sign in / Sign up

Export Citation Format

Share Document