scholarly journals PLEKHH2-ALK: A Novel In-frame Fusion With Durable Response to Alectinib: Utilizing RNA Sequencing in Search for Hidden Gene Fusions Susceptible to Targeted Therapy

2021 ◽  
Vol 22 (1) ◽  
pp. e51-e53
Author(s):  
Misako Nagasaka ◽  
Amanda Fisher ◽  
Tahmida Chowdhury ◽  
Yubin Ge ◽  
Ammar Sukari
2019 ◽  
Vol 37 (4_suppl) ◽  
pp. 34-34
Author(s):  
Hark K. Kim

34 Background: Among the two histologic subtype of gastric cancer (GC), diffuse gastric cancer (DGC) is increasingly being considered distinct from intestinal type gastric cancer (IGC). Despite the relative importance of DGC, few whole transcriptomic analyses have been performed for this histological subtype. We therefore conducted an RNA-sequencing study to search for novel driver fusions in DGC. Methods: We conducted a whole transcriptomic and targeted RNA sequencing study of 384 Korean DGCs to identify gene fusions that may be novel prognostic markers or therapeutic targets. Targeted DNA sequencing and SNP6.0 array analyses were conducted in parallel. Results: Whole transcriptomic analyses were conducted in 80 discovery dataset tumors collected from young patients with DGC who had not been treated with chemotherapy or radiation. Twenty-five in-frame fusions were associated with DGC, four of which were recurrent in 384 DGCs based on targeted RNA sequencing and RT-PCR sequencing analyses. Three of the four recurrent fusions contained a RhoGAP domain in their 3’ partner genes. Patients with one of these three fusions have a significantly worse prognosis than those without (HR, 2.8 [95% CI, 1.5‒5.3]). The fusion that harbored a PAP2 domain in the 3’ partner gene was also identified as recurrent and poor prognostic in-frame fusions. Overall, RhoGAP and PAP2 domain-containing fusions were present in 7.5% of DGCs, but not in adjacent normal tissue, and clearly defined the worst prognosis subgroup. Their prognostic impact (adjusted HR 4.1 [95% CI, 2.1‒7.9]) was higher than, and independent of, chromosomal instability (CIN) and CDH1 mutation, which we previously identified as the strongest adverse prognostic genomic abnormalities in DGCs (adjusted HRs, 2.5 (1.5‒4.4) and 2.4 (1.3‒4.4), respectively). Our comprehensive in-frame fusion screen also identified several clinically-actionable fusions amenable to ALK or FGFR inhibition, which had not been previously associated with gastric cancer. Conclusions: Our findings may provide novel genomic insights guiding future personalized strategies for managing DGCs, given the strong prognostic impact of RhoGAP and PAP2 domain-containing gene fusions.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3052-3052
Author(s):  
Ruiying Zhao ◽  
Yuchen Han ◽  
Chan Xiang ◽  
Shengnan Chen ◽  
Jikai Zhao ◽  
...  

3052 Background: Next-generation sequencing of DNA, which can provide valid information for clinical therapeutic decision-making, has been widely used in the management of lung cancer especially adenocarcinoma. However, due to its technical limitations for detecting certain alterations such as gene rearrangement, the DNA-based sequencing (DNA-seq) may miss the actionable alteration in some cases, who would have benefited from targeted therapy. The study aimed to evaluate the capability of RNA sequencing (RNA-seq) in identifying DNA-seq undetectable gene alterations in lung adenocarcinomas. Methods: A total of 219 lung adenocarcinomas, which had no driver alteration detected by DNA-seq (OncoScreen Plus, Burning Rock Biotech) and had a max AF ≥5%, underwent capture-based RNA-seq using a custom panel (OncoRNA, Burning Rock Biotech) spanning full transcripts of 115 genes commonly involved in cancer genomic rearrangements. Furthermore, an independent cohort of 100 DNA-seq driver–negative lung adenocarcinomas were also subjected to RNA-seq with the same panel. Results: In the discovery cohort, 166/219 samples (75.8%) generated qualified RNA-seq data for subsequent analyses. RNA-seq identified 44 previously undetected alterations (26.5%), including 40 gene fusions (24.1%), 1 MET exon14 skipping variant ( METex14, 0.6%) and 3 other alternative splicing variants (1.8%). Among them, 14 (8.4%) were potential actionable alterations, consisting of METex14 and in-frame fusions containing functional domain of the driver gene (4 ROS1 fusions, 3 BRAF fusions, 2 NRG1 fusions, 2 EGFR fusions, 1 ALK fusion and 1 MET fusion). In the validation cohort, 69/100 samples (69.0%) generated qualified data. RNA-seq identified 22 DNA-seq undetected alterations (31.9%), with 7 of them being potential actionable fusions (10.1%). ROS1 fusion remained as the most common actionable alteration (n = 3), followed by ALK fusion (n = 2), EGFR fusion (n = 1) and MET fusion (n = 1). Further analyses of the two datasets revealed that lacking sufficient coverage spanning the rearrangement breakpoint in the DNA-seq panel mainly accounted for the failure of DNA-seq on detecting these fusions. This can be improved by increasing the corresponding probe coverage in the DNA-seq panel. In addition, complex genomic rearrangement at DNA level and the presence of repetitive sequence in the intronic region spanning or adjacent to the breakpoint might lead to missed calling of canonical fusions by DNA-seq. Conclusions: Targeted RNA-seq can effectively identify genomic rearrangements that are undetectable by DNA-seq and provide lung adenocarcinoma patients with more opportunities for targeted therapy. Therefore, it should be recommended for all patients, in whom DNA-seq fails to detect driver alteration.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3627-3627 ◽  
Author(s):  
Antonella Padella ◽  
Giorgia Simonetti ◽  
Giulia Paciello ◽  
Anna Ferrari ◽  
Elisa Zago ◽  
...  

Abstract Acute Myeloid Leukemia (AML) is a highly heterogeneous disease and a complex network of events contribute to its pathogenesis. Chromosomal rearrangements and fusion genes have a crucial diagnostic, prognostic and therapeutic role in AML. A recent RNA sequencing (RNAseq) study on 179 AML revealed that fusion events occur in 45% of patients. However, the leukemogenic potential of these fusions and their prognostic role are still unknown. To identify novel rare gene fusions having a causative role in leukemogenesis and to identify potential targets for personalized therapies, transcriptome profiling was performed on AML cases with rare and poorly described chromosomal translocations. Bone marrow samples were collected from 5 AML patients (#59810, #20 and #84 at diagnosis and #21 and #32 at relapse). RNAseq was performed using the Illumina Hiseq2000 platform. The presence of gene fusions was assessed with deFuse and Chimerascan. Putative fusion genes were prioritized using Pegasus and Oncofuse, in order to select biologically relevant fusions. Chimeras not supported by split reads, occurring in reactive samples, involving not annotated or conjoined genes were removed. The remaining fusions were prioritized according to mapping of partner genes to chromosomes involved in the translocation or to Chimerascan and deFuse concordance. The CBFβ-MYH11 chimera was identified in sample #84, carrying inv(16) aberration, thus confirming the reliability of our analysis. Sample #59810 carried the fusion transcript ZEB2-BCL11B (Driver Score, DS=0.7), which is an in-frame fusion and a rare event in AML associated with t(2;14)(q21;q32). The breakpoint of the fusion mapped in exon 2 of ZEB2 (ENST00000558170) and exon 2 of BCL11B (ENST00000357195). Differently from previous data, this fusion transcript showed 3 splicing isoforms. Type 1 isoform is the full-length chimera and it retains all exons of both genes involved in the translocation. Type 2 isoform was characterized by the junction of exon 2 of ZEB2 and exon 3 of BCL11B. In type 3 isoform, exon 2 and 3 of BCL11B were removed, resulting in an mRNA composed by exon 2 of ZEB2 and exon 4 of BCL11B. Gene expression profiling showed an upregulation of ZEB2 and BCL11B transcripts in the patient's blasts, compared to 53 AML samples with no chromosomal aberrations in the 14q32 region. The same samples showed the WT1-CNOT2 chimera, which is a novel out-of-frame fusion (DS= 0.008) related to t(11;12) translocation, identified by cytogenetic analysis. Two new in-frame fusion genes were identified in sample #20: CPD-PXT1 (DS=0.07), which appeared as the reciprocal fusion product of t(6;17) translocation, and SAV1-GYPB, which remained cryptic at cytogenetic analysis (DS=0.8, alternative splicing events are being investigated). SAV1 was downregulated in sample #20 compared to our AML cohort, suggesting the putative loss of a tumour-suppressor gene. Sample #21 carried a t(3;12) translocation and RNAseq identified a novel fusion event between chromosomes 19 and 7, involving the genes OAZ and MAFK (DS=0.9). Finally, no chimeras were confirmed in sample #32 having a t(12;18) translocation. Our data suggest that fusion events are frequent in AML and a number of them cannot be detected by current cytogenetic analyses. Gene fusions cooperate to AML pathogenesis and heterogeneity and we are further investigating the oncogenic potential of the identified translocations. Moreover, the results firmly indicate that different approaches, including G-banding, molecular biology, bioinformatics and statistics, need to be integrated in order to better understand AML pathogenesis and improve patients' stratification, High-resolution sequencing analysis currently represent the most informative strategy to tailor personalized therapies. Acknowledgments: ELN, AIL, AIRC, progetto Regione-Università 2010-12 (L. Bolondi), Fondazione del Monte di Bologna e Ravenna, FP7 NGS-PTL project. Disclosures Soverini: Novartis, Briston-Myers Squibb, ARIAD: Consultancy. Martinelli:BMS: Speakers Bureau; MSD: Consultancy; Roche: Consultancy; ARIAD: Consultancy; Novartis: Speakers Bureau; Pfizer: Consultancy.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e044543
Author(s):  
Shuhang Wang ◽  
Hui-Yao Huang ◽  
Dawei Wu ◽  
Hong Fang ◽  
Jianming Ying ◽  
...  

IntroductionLimited clinical studies have been conducted on rare solid tumours, and there are few guidelines on the diagnosis and treatment, including experiences with targeted therapy and immunotherapy, of rare solid tumours in China, resulting in limited treatment options and poor outcomes. This study first proposes a definition of rare tumours and is designed to test the preliminary efficacy of targeted and immunotherapy drugs for the treatment of rare tumours.Methods and analysisThis is a phase II, open-label, non-randomised, multiarm, single-centre clinical trial in patients with advanced rare solid tumours who failed standard treatment; the study aims to evaluate the safety and efficacy of targeted drugs in patients with advanced rare solid tumours with corresponding actionable alterations, as well as the safety and efficacy of immune checkpoint (programmed death receptor inhibitor 1, PD-1) inhibitors in patients with advanced rare solid tumours without actionable alterations. Patients with advanced rare tumours who fail standardised treatment and carry actionable alterations (Epidermal growth factor receptor (EGFR) mutations, ALK gene fusions, ROS-1 gene fusions, C-MET gene amplifications/mutations, BRAF mutations, CDKN2A mutations, BRCA1/2 mutations, HER-2 mutations/overexpressions/amplifications or C-KIT mutations) will be enrolled in the targeted therapy arm and be given the corresponding targeted drugs. Patients without actionable alterations will be enrolled in the PD-1 inhibitor arm and be treated with sintilimab. After the patients treated with vemurafenib, niraparib and palbociclib acquire resistance, they will receive combination treatment with sintilimab or atezolizumab. With the use of Simon’s two-stage Minimax design, and the sample size was estimated to be 770. The primary endpoint of this study is the objective response rate. The secondary endpoints are progression-free survival in the targeted treatment group and single-agent immunotherapy group; the duration of response in the targeted therapy and single-agent immunotherapy groups; durable clinical benefit in the single-agent immunotherapy group; and the incidence of adverse events.Ethics and disseminationEthics approval was obtained from the Chinese Academy of Medical Sciences (ID: 20/132-2328). The results from this study will be actively disseminated through manuscript publications and conference presentations.Trial registration numbersNCT04423185; ChiCTR2000039310.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii349-iii350
Author(s):  
Torsten Pietsch ◽  
Christian Vokuhl ◽  
Gerrit H Gielen ◽  
Andre O von Bueren ◽  
Everlyn Dörner ◽  
...  

Abstract INTRODUCTION Glioblastoma in infancy and early childhood is characterized by a more favorable outcome compared to older children, a stable genome, and the occurrence of tyrosine kinase gene fusions that may represent therapeutic targets. METHODS 50 glioblastomas (GBM) with supratentorial location occurring in children younger than four years were retrieved from the archives of the Brain Tumor Reference Center, Institute of Neuropathology, University of Bonn. DNA and RNA were extracted from FFPE tumor samples. Gene fusions were identified by FISH using break-apart probes for ALK, NTRK1, -2, -3, ROS1 and MET, Molecular Inversion Probe (MIP) methodology, and targeted RNA sequencing. RESULTS 37 supratentorial GBM occurred in the first year of life, 13 GBM between one and four years. 18 cases showed fusions of ALK to different fusion partners; all occurred in the first year of life (18/37 cases, 48.6%). Fusions of ROS1 were found in 5, MET in 3, NTRK1, -2, -3 in 10 cases. 12 cases showed no and two novel fusions. The different methods led to comparable results; targeted RNA sequencing was not successful in a fraction of cases. Break-apart FISH led to reliable results on the next day, MIP technology represented the most sensitive method for analysis of FFPE samples. CONCLUSIONS Gene fusions involving the tyrosine kinase genes ALK, MET, ROS1 and NTRK1, -2, -3 occurred in 72% of glioblastomas of children younger than four years; the most frequent were ALK fusions occurring in infant GBM. DNA based MIP technology represented the most robust and sensitive assay.


2010 ◽  
Vol 11 (10) ◽  
Author(s):  
Andrea Sboner ◽  
Lukas Habegger ◽  
Dorothee Pflueger ◽  
Stephane Terry ◽  
David Z Chen ◽  
...  

2017 ◽  
pp. 1-7 ◽  
Author(s):  
Kasey L. Couts ◽  
Caroline E. McCoach ◽  
Danielle Murphy ◽  
Jason Christiansen ◽  
Jacqueline Turner ◽  
...  

Purpose ROS1 gene fusions demonstrate oncogenic activity, and patients with non–small-cell lung cancer (NSCLC) harboring a ROS1 fusion benefit from the use of a ROS1 inhibitor; however, clinical response to ROS1 inhibitors remains largely uncharacterized outside of NSCLC. ROS1 fusions have been identified in multiple tumor types but have not been reported in cutaneous melanoma. Patients and Methods Tumors from 22 patients with acral lentiginous melanoma (ALM) were analyzed with targeted RNA sequencing to detect fusions in ROS1, NTRK1, NTRK2, NTRK3, and ALK genes. A patient harboring a ROS1 fusion was enrolled in a phase I basket trial of a ROS1/TRK/ALK inhibitor (entrectinib). An additional 78 tumors with different subtypes of melanoma were screened by ROS1 immunohistochemistry. Results Targeted sequencing identified a GOPC- ROS1 fusion in a patient with ALM. The patient underwent a dramatic and durable response to entrectinib, with a RECIST (version 1.1) partial response of −38% at 3 months and −55% at 11 months. The response is ongoing, and the patient has not developed any new lesions. No additional ROS1 fusions were identified by immunohistochemistry, resulting in a frequency of 3.0% in ALM and 1.3% in all melanomas. Conclusion ROS1 fusions occur and can respond to targeted therapy in cutaneous melanoma; however, they may be specific to ALM subtype. This report expands knowledge of ROS1 inhibitor response outside of NSCLC and identifies new therapeutic options for a subset of patients with ALM.


2021 ◽  
Vol 14 (1) ◽  
pp. 100884
Author(s):  
Franck Ah-Pine ◽  
Déborah Casas ◽  
Philippe Menei ◽  
Blandine Boisselier ◽  
Emmanuel Garcion ◽  
...  

2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e21523-e21523
Author(s):  
Milena Urbini ◽  
Annalisa Astolfi ◽  
Valentina Indio ◽  
Maristella Saponara ◽  
Margherita Nannini ◽  
...  

e21523 Background: A subset of KIT/PDGFRA wild-type GIST (WT) harbour mutations in SDH units. In the majority of the remaining cases of WT GIST no other molecular events are identified.We performed a RNA-seq in a WT GIST without mutations in SDH genes using next generation approach to discover molecular events in this GIST population. Methods: In 2003, a 63-year old woman underwent surgery for an ileal GIST (size 6 cm, MI 6/50HPF).After 6 years, she developed a recurrence with a single hepatic lesion. The KIT and PDGFRA analysis of the lesion did not show mutations. Therefore, she did not receive imatinib but she underwent a surgical removal. The analysis of all SDH units did not show mutations. So paired-end RNA-seq (75X2) was performed with Illumina HiScanSQ platform. After mapping the short reads on the human genome(HG19), SNVs and InDels were called by SNVMix2 with an accurate filtering procedures including predictors of mutations effect at protein level. Gene fusions discovery was done considering the agreement between DeFuse, ChimeraScan and FusionMap tools and validated by SangerSequencing using primers spanning the mRNA breakpoints. Results: Four different gene fusions and 206 non-synonymous SNVs were discovered, of which 62 were called deleterious by at least one predictor, and they are undergoing further validation. SPRED2-NELFCD gene fusion originated from an interchromosomal translocation-inversion between chr 20 and 2. The event involved exon1 of SPRED2 and exon11 of NELFCD, probably leading to inactivation of both genes. NELFCD encodes a component of the NELF complex that negatively regulates transcription elongation by RNA pol II, while SPRED2 is a member of the Sprouty /SPRED family that repress growth factor-induced activation of the MAPK/ERK pathway. The other three events were intrachromosomal aberrations: MARK2-PPFIA1 and PLA2G16-ATL3 on chr 11 and ASCC1-C10orf11 on chr 10. Only the first event led to an in-frame fusion (MARK2 ex1- PPFIA1 ex2) probably dysregulating the expression of the downstream gene. Conclusions: This is the first evidence of gene fusions in GIST. The oncogenetic role and the tumor frequency of these events deserve to be studied.


2015 ◽  
Vol 148 (4) ◽  
pp. S-78
Author(s):  
Andrew Blum ◽  
Vinay Varadan ◽  
Yan Guo ◽  
Ann Marie Kieber-Emmons ◽  
Lakshmeswari Ravi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document