Low-glycemic-load, omega-3 PUFA-enriched semi-vegetarian diet decreases serum apolipoprotein b and reduces the apoB/apoA-I ratio in familial hypercholesterolemia

2021 ◽  
Vol 46 ◽  
pp. S688
Author(s):  
J. Karbowska ◽  
K. Mironiuk ◽  
A. Mickiewicz ◽  
A. Karbowski ◽  
R.T. Smolenski ◽  
...  
Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 235
Author(s):  
Gabrielle Roy ◽  
Anykim Boucher ◽  
Patrick Couture ◽  
Jean-Philippe Drouin-Chartier

Background: Conclusive data on the effectiveness of dietary interventions in heterozygous familial hypercholesterolemia (HeFH) management are unavailable. Whether this is due to a true lack of effects or biases in intervention designs remains unsettled. We systematically assessed the impact on LDL-C of published dietary randomized controlled trials (RCTs) conducted among individuals with HeFH in relation to their design and risk of bias. Methods: We systematically searched PubMed, Web of Science, and Embase in November 2020 to identify RCTs that assessed the impact of: (1) food-based interventions; (2) dietary counseling interventions; or (3) dietary supplements on LDL-C in individuals with HeFH. We evaluated the risk of bias of each study using the Cochrane Risk of Bias 2 method. Results: A total of 19 RCTs comprising 837 individuals with HeFH were included. Of those, five were food-based interventions, three were dietary counseling interventions and 12 were dietary supplement-based interventions (omega-3, n = 3; phytosterols, n = 7; guar gum, n = 1; policosanol, n = 1). One study qualified both as a food-based intervention and as a dietary supplement intervention due to its factorial design. A significant reduction in LDL-C levels was reported in 10 RCTs, including eight dietary supplement interventions (phytosterols, n = 6, omega-3, n = 1; guar gum, n = 1), one food-based intervention and one dietary counseling intervention. A total of 13 studies were judged to have some methodological biases in a way that substantially lowers confidence in the results. Studies at low risk of biases were more likely to report significant reductions in LDL-C concentrations, compared with studies at risk of bias (chi-square statistic: 5.49; p = 0.02). Conclusion: This systemic review shows that the apparent lack of effectiveness of diet manipulation in modulating plasma levels of LDL-C among individuals with HeFH is likely due to biases in study designs, rather than a true lack of effects. The likelihood of reporting significant reductions in LDL-C was associated with the concurrent risk of bias.


1986 ◽  
Vol 9 (5) ◽  
pp. 343-348 ◽  
Author(s):  
M. Odaka ◽  
H. Kobayashi ◽  
K. Soeda ◽  
N. Murotani ◽  
Y. Saito ◽  
...  

For the treatment of familial hypercholesterolemia, Liposorber LA-40 was clinically applied. The Liposorber is a commercially developed affinity adsorbent for plasma perfusion which selectivily adsorbs low density lipoproteins and very low density lipoproteins and is specially designed for plasmapheretic treatment of hypercholesterolemia. The Liposorber column, containing activated cellulose beads having an affinity for liporpotein containing apolipoprotein-B, has an excellent adsorption capacity, excellent selectivity, minimum albumin loss. This new apheresis system was applied to 2 clinical cases. After seven months of trial perfusion every 2 weeks, patient condition was good, with a level of total cholesterol under 300 mg/dl. No replacement fluids were given during or after treatment. In this paper, clinical results of these patients were shown and the mechanism of adsorption of this specific adsorbent was discussed.


2016 ◽  
Vol 62 (7) ◽  
pp. 930-946 ◽  
Author(s):  
Børge G Nordestgaard ◽  
Anne Langsted ◽  
Samia Mora ◽  
Genovefa Kolovou ◽  
Hannsjörg Baum ◽  
...  

Abstract AIMS To critically evaluate the clinical implications of the use of non-fasting rather than fasting lipid profiles and to provide guidance for the laboratory reporting of abnormal non-fasting or fasting lipid profiles. METHODS AND RESULTS Extensive observational data, in which random non-fasting lipid profiles have been compared with those determined under fasting conditions, indicate that the maximal mean changes at 1–6 h after habitual meals are not clinically significant [+0.3 mmol/L (26 mg/dL) for triglycerides; −0.2 mmol/L (8 mg/dL) for total cholesterol; −0.2 mmol/L (8 mg/dL) for LDL cholesterol; +0.2 mmol/L (8 mg/dL) for calculated remnant cholesterol; −0.2 mmol/L (8 mg/dL) for calculated non-HDL cholesterol]; concentrations of HDL cholesterol, apolipoprotein A1, apolipoprotein B, and lipoprotein(a) are not affected by fasting/non-fasting status. In addition, non-fasting and fasting concentrations vary similarly over time and are comparable in the prediction of cardiovascular disease. To improve patient compliance with lipid testing, we therefore recommend the routine use of non-fasting lipid profiles, whereas fasting sampling may be considered when non-fasting triglycerides are >5 mmol/L (440 mg/dL). For non-fasting samples, laboratory reports should flag abnormal concentrations as triglycerides ≥2 mmol/L (175 mg/dL), total cholesterol ≥5 mmol/L (190 mg/dL), LDL cholesterol ≥3 mmol/L (115 mg/dL), calculated remnant cholesterol ≥0.9 mmol/L (35 mg/dL), calculated non-HDL cholesterol ≥3.9 mmol/L (150 mg/dL), HDL cholesterol ≤1 mmol/L (40 mg/dL), apolipoprotein A1 ≤1.25 g/L (125 mg/dL), apolipoprotein B ≥1.0 g/L (100 mg/dL), and lipoprotein(a) ≥50 mg/dL (80th percentile); for fasting samples, abnormal concentrations correspond to triglycerides ≥1.7 mmol/L (150 mg/dL). Life-threatening concentrations require separate referral for the risk of pancreatitis when triglycerides are >10 mmol/L (880 mg/dL), for homozygous familial hypercholesterolemia when LDL cholesterol is >13 mmol/L (500 mg/dL), for heterozygous familial hypercholesterolemia when LDL cholesterol is >5 mmol/L (190 mg/dL), and for very high cardiovascular risk when lipoprotein(a) >150 mg/dL (99th percentile). CONCLUSIONS We recommend that non-fasting blood samples be routinely used for the assessment of plasma lipid profiles. Laboratory reports should flag abnormal values on the basis of desirable concentration cutpoints. Non-fasting and fasting measurements should be complementary but not mutually exclusive.


1989 ◽  
Vol 82 (4) ◽  
Author(s):  
Katriina Aalto-Set�l� ◽  
Helena Gylling ◽  
Eero Helve ◽  
Petri Kovanen ◽  
TatuA. Miettinen ◽  
...  

2001 ◽  
Vol 47 (3) ◽  
pp. 438-443 ◽  
Author(s):  
E Shyong Tai ◽  
Evelyn S C Koay ◽  
Edmund Chan ◽  
Tzer Jing Seng ◽  
Lih Ming Loh ◽  
...  

Abstract Background: Familial hypercholesterolemia (FH) and familial defective apolipoprotein B-100 (FDB) represent ligand-receptor disorders that are complementary. Individuals with both FH and FDB are unusual. We report a family with both disorders and the impact of the mutations on the phenotypes of the family members. Methods: We used single strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) for genetic analysis of all 18 exons and the promoter region of the LDL receptor and DGGE for genetic analysis of the apolipoprotein B-100 (apo B-100) gene. The functional significance of the apo B-100 mutation was studied using a U937 cell proliferation assay. Fasting serum lipid profiles were determined for the index case and seven first-degree relatives. Results: One of the patient’s sisters had a missense mutation (Asp407→Lys) in exon 9 of the LDL receptor and a serum LDL-cholesterol concentration of 4.07 mmol/L. Four other first-degree relatives had hyperlipidemia but no LDL-receptor mutation. However, these subjects had a mutation of the apo B-100 gene (Arg3500→Trp). The cell proliferation rate of U937 cells fed with LDL from other subjects with the same mutation was fourfold less than that of controls. The index case had both FH- and FDB-related mutations. Her serum LDL-cholesterol (9.47 mmol/L) was higher than all other relatives tested. Conclusions: Existence of both FH and FDB should be considered in families with LDL-receptor mutations in some but not all individuals with hypercholesterolemia or when some individuals in families with FH exhibit exaggerated hypercholesterolemia.


Sign in / Sign up

Export Citation Format

Share Document