Model-assisted Rock-Eval data interpretation for source rock evaluation: Examples from producing and potential shale gas resource plays

2016 ◽  
Vol 165 ◽  
pp. 290-302 ◽  
Author(s):  
Zhuoheng Chen ◽  
Chunqing Jiang ◽  
Denis Lavoie ◽  
Julito Reyes
2017 ◽  
Vol 6 (1) ◽  
pp. 34
Author(s):  
Dairo Victoria ◽  
Asue Onenu

Selected subsurface core samples of the shale of Akinbo Formation as penetrated by an exploratory well in Ibese, Eastern Dahomey basin were investigated to ascertain the quality and quantity of organic matter, the hydrocarbon potential and kerogen type.The samples were subjected to Total Organic Carbon (TOC) and Rock Eval analyses and various cross plots were generated from the data obtained.The TOC and Free oil content (S1) of all the shale samples range from 0.96wt% to 2.82wt% and 0.07mgHC/g to 0.17mgHC/g with mean values of 1.67wt% and 0.11mgHC/g respectively while the source rock potential (S2) ranges from 0.01mgHC/g to 0.17mgHC/g with an average value of 0.08mgHC/g. Also, the Hydrogen Index (HI) and the Oxygen Index (OI), ranges from 0.35mgHC/g TOC to 16.7mgHC/g TOC and 11.4mgCO/g TOC to 38.33mgCO/g TOC with an average value of 5.77mgHC/g TOC and 19.04mgCO/g TOC respectively. The Production Index (PI) and the Generative Potential (GP) range from 0.38 to 0.94 and 0.12mgHC/g to 0.34mgHC/g with mean values of 0.61 and 0.19mgHC/g respectively.The results obtained from the cross plots of HI versus OI, S2 versus TOC and TOC versus GP; It shows that the shale samples from the Akinbo Formation have good organic matter richness to generate hydrocarbon, dominantly gas prone and from a Type III kerogen.


2021 ◽  
Vol 5 (1) ◽  
pp. 50-59
Author(s):  
Ayad N. F. Edilbi ◽  
Kamal Kolo ◽  
Blind F. Khalid ◽  
Mardin N. Muhammad Salim ◽  
Sana A. Hamad ◽  
...  

This study reports on the petroleum potential of the Upper Triassic Baluti Formation in Bekhme-1 and Gulak-1 Wells from Akri¬-Bijeel Block within the Bekhme Anticline area, North of Erbil City. The area is a part of the Zagros Fold and Thrust Belt, and is locally situated within the High Folded Zone. Typically, the Baluti Formation is composed of gray and green shale calcareous dolomite with intercalations of thinly bedded dolomites, dolomitic limestones, and silicified limestones which in places are brecciated. The geochemical indicators obtained from Rock-Eval pyrolysis of Baluti samples gave Total Organic Carbon content (TOC wt. %) average values of 0.15 and 0.18 wt. % and potential hydrocarbon content (S2) average values of 0.78 mg HC/g rock and 0.58 mg HC/g rock for Bekhme-1 and Gulak-1 respectively, suggesting a source rock of poor potential. The type of organic matter is of mixed type II-III and III kerogens with an average Tmax value of 440 °C for both boreholes, exhibiting early to peak stage of thermal maturity. Considering the results of this study, it is concluded that Baluti Formation in the studied area can not be regarded as a potential source rock for hydrocarbon generation.


Author(s):  
Bodhisatwa Hazra ◽  
David A. Wood ◽  
Devleena Mani ◽  
Pradeep K. Singh ◽  
Ashok K. Singh

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2679
Author(s):  
Yuying Zhang ◽  
Shu Jiang ◽  
Zhiliang He ◽  
Yuchao Li ◽  
Dianshi Xiao ◽  
...  

In order to analyze the main factors controlling shale gas accumulation and to predict the potential zone for shale gas exploration, the heterogeneous characteristics of the source rock and reservoir of the Wufeng-Longmaxi Formation in Sichuan Basin were discussed in detail, based on the data of petrology, sedimentology, reservoir physical properties and gas content. On this basis, the effect of coupling between source rock and reservoir on shale gas generation and reservation has been analyzed. The Wufeng-Longmaxi Formation black shale in the Sichuan Basin has been divided into 5 types of lithofacies, i.e., carbonaceous siliceous shale, carbonaceous argillaceous shale, composite shale, silty shale, and argillaceous shale, and 4 types of sedimentary microfacies, i.e., carbonaceous siliceous deep shelf, carbonaceous argillaceous deep shelf, silty argillaceous shallow shelf, and argillaceous shallow shelf. The total organic carbon (TOC) content ranged from 0.5% to 6.0% (mean 2.54%), which gradually decreased vertically from the bottom to the top and was controlled by the oxygen content of the bottom water. Most of the organic matter was sapropel in a high-over thermal maturity. The shale reservoir of Wufeng-Longmaxi Formation was characterized by low porosity and low permeability. Pore types were mainly <10 nm organic pores, especially in the lower member of the Longmaxi Formation. The size of organic pores increased sharply in the upper member of the Longmaxi Formation. The volumes of methane adsorption were between 1.431 m3/t and 3.719 m3/t, and the total gas contents were between 0.44 m3/t and 5.19 m3/t, both of which gradually decreased from the bottom upwards. Shale with a high TOC content in the carbonaceous siliceous/argillaceous deep shelf is considered to have significant potential for hydrocarbon generation and storage capacity for gas preservation, providing favorable conditions of the source rock and reservoir for shale gas.


Author(s):  
Sebastian Grohmann ◽  
Susanne W. Fietz ◽  
Ralf Littke ◽  
Samer Bou Daher ◽  
Maria Fernanda Romero-Sarmiento ◽  
...  

Several significant hydrocarbon accumulations were discovered over the past decade in the Levant Basin, Eastern Mediterranean Sea. Onshore studies have investigated potential source rock intervals to the east and south of the Levant Basin, whereas its offshore western margin is still relatively underexplored. Only a few cores were recovered from four boreholes offshore southern Cyprus by the Ocean Drilling Program (ODP) during the drilling campaign Leg 160 in 1995. These wells transect the Eratosthenes Seamount, a drowned bathymetric high, and recovered a thick sequence of both pre- and post-Messinian sedimentary rocks, containing mainly marine marls and shales. In this study, 122 core samples of Late Cretaceous to Messinian age were analyzed in order to identify organic-matter-rich intervals and to determine their depositional environment as well as their source rock potential and thermal maturity. Both Total Organic and Inorganic Carbon (TOC, TIC) analyses as well as Rock-Eval pyrolysis were firstly performed for the complete set of samples whereas Total Sulfur (TS) analysis was only carried out on samples containing significant amount of organic matter (>0.3 wt.% TOC). Based on the Rock-Eval results, eight samples were selected for organic petrographic investigations and twelve samples for analysis of major aliphatic hydrocarbon compounds. The organic content is highly variable in the analyzed samples (0–9.3 wt.%). TS/TOC as well as several biomarker ratios (e.g. Pr/Ph < 2) indicate a deposition under dysoxic conditions for the organic matter-rich sections, which were probably reached during sporadically active upwelling periods. Results prove potential oil prone Type II kerogen source rock intervals of fair to very good quality being present in Turonian to Coniacian (average: TOC = 0.93 wt.%, HI = 319 mg HC/g TOC) and in Bartonian to Priabonian (average: TOC = 4.8 wt.%, HI = 469 mg HC/g TOC) intervals. A precise determination of the actual source rock thickness is prevented by low core recovery rates for the respective intervals. All analyzed samples are immature to early mature. However, the presence of deeper buried, thermally mature source rocks and hydrocarbon migration is indicated by the observation of solid bitumen impregnation in one Upper Cretaceous and in one Lower Eocene sample.


Sign in / Sign up

Export Citation Format

Share Document