Local and remote interactions between macrophages and microglia in neurological conditions

2022 ◽  
Vol 74 ◽  
pp. 118-124
Author(s):  
Séverine Boillée
ASHA Leader ◽  
2014 ◽  
Vol 19 (1) ◽  
pp. 6-6
Author(s):  
Charles Ellis Jr.

2020 ◽  
Vol 78 (8) ◽  
pp. 494-500 ◽  
Author(s):  
Adalberto STUDART-NETO ◽  
Bruno Fukelmann GUEDES ◽  
Raphael de Luca e TUMA ◽  
Antonio Edvan CAMELO FILHO ◽  
Gabriel Taricani KUBOTA ◽  
...  

ABSTRACT Background: More than one-third of COVID-19 patients present neurological symptoms ranging from anosmia to stroke and encephalopathy. Furthermore, pre-existing neurological conditions may require special treatment and may be associated with worse outcomes. Notwithstanding, the role of neurologists in COVID-19 is probably underrecognized. Objective: The aim of this study was to report the reasons for requesting neurological consultations by internists and intensivists in a COVID-19-dedicated hospital. Methods: This retrospective study was carried out at Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil, a 900-bed COVID-19 dedicated center (including 300 intensive care unit beds). COVID-19 diagnosis was confirmed by SARS-CoV-2-RT-PCR in nasal swabs. All inpatient neurology consultations between March 23rd and May 23rd, 2020 were analyzed. Neurologists performed the neurological exam, assessed all available data to diagnose the neurological condition, and requested additional tests deemed necessary. Difficult diagnoses were established in consensus meetings. After diagnosis, neurologists were involved in the treatment. Results: Neurological consultations were requested for 89 out of 1,208 (7.4%) inpatient COVID admissions during that period. Main neurological diagnoses included: encephalopathy (44.4%), stroke (16.7%), previous neurological diseases (9.0%), seizures (9.0%), neuromuscular disorders (5.6%), other acute brain lesions (3.4%), and other mild nonspecific symptoms (11.2%). Conclusions: Most neurological consultations in a COVID-19-dedicated hospital were requested for severe conditions that could have an impact on the outcome. First-line doctors should be able to recognize neurological symptoms; neurologists are important members of the medical team in COVID-19 hospital care.


2019 ◽  
Author(s):  
Matthew Healey ◽  
Muttuswamy Sivakumaran ◽  
Mark Platt

<p>Prion diseases are a group of fatal transmissible neurological conditions caused by the change in conformation of the normal intrinsic cellular prion protein (PrP<sup>C</sup>) in to the highly ordered insoluble amyloid state conformer (PrP<sup>SC</sup>). We present a rapid assay using Aptamers and Resistive Pulse Sensing, RPS, to extract and quantify proteins from complex sample matrices, demonstrate with the quantification of PrP<sup>c</sup>. We functionalise the surface of superparamagnetic beads, SPBs, with a DNA aptamer. First SPB’s termed P-Beads, are used to pre-concentrate the analyte from a large sample volume. The PrP<sup>c</sup> protein is then eluted from the P-Beads before aptamer modified sensing beads, S-Beads, are added. The velocity of the S-Beads through the nanopore reveals the concentration of the PrP<sup>c</sup> protein. The process is done in under an hour and allows the detection of picomol’s of protein. The technique could be easily adopted to the mutated version of the protein and integrated into clinical workflows for the screening of blood donations and transfusions. </p>


2018 ◽  
Vol 25 (19) ◽  
pp. 2272-2290 ◽  
Author(s):  
Aafrin M. Pettiwala ◽  
Prabhat K. Singh

Background: Amino acids are crucially involved in a myriad of biological processes. Any aberrant changes in physiological level of amino acids often manifest in common metabolic disorders, serious neurological conditions and cardiovascular diseases. Thus, devising methods for detection of trace amounts of amino acids becomes highly elemental to their efficient clinical diagnosis. Recently, the domain of developing optical sensors for detection of amino acids has witnessed significant activity which is the focus of the current review article. Methods: We undertook a detailed search of the peer-reviewed literature that primarily deals with optical sensors for amino acids and focuses on the use of different type of materials as a sensing platform. Results: Ninety-five papers have been included in the review, majority of which deal with optical sensors. We attempt to systematically classify these contributions based on the applications of various chemical and biological scaffolds such as polymers, supramolecular assemblies, nanoparticles, DNA, heparin etc for the sensing of amino acids. This review identifies that supramolecular assemblies and nanomaterial continue to be commonly used platforms to devise sensors for amino acids followed by surfactant assemblies. Conclusion: The broad implications of amino acids in human health and diagnosis have stirred a lot of interest to develop optimized optical detection systems for amino acids in recent years, using different materials based on chemical and biological scaffolds. We have also attempted to highlight the merits and demerits of some of the noteworthy sensor systems to instigate further efforts for constructing amino acids sensor based on unconventional concepts.


2020 ◽  
Vol 20 (3) ◽  
pp. 174-183
Author(s):  
Bushra Nabi ◽  
Saleha Rehman ◽  
Faheem Hyder Pottoo ◽  
Sanjula Baboota ◽  
Javed Ali

: NeuroAIDS, a disease incorporating both infectious and neurodegenerative pathways, is still a formidable challenge for the researchers to deal with. The primary concern for the treatment of neuroAIDS still remains the inaccessibility of the viral reservoir, making it indispensable for novel techniques to be continuously innovated. Since the brain serves as a reservoir for viral replication, it is pragmatic and a prerequisite to overcome the related barriers in order to improve the drug delivery to the brain. The current treatment ideology is based on the combinatorial approach of a mocktail of antiretroviral drugs. However, complete eradication of the disease could not be achieved. Thereby the arena of gene-based cellular delivery is trending and has created a niche for itself in the present scenario. To establish the supremacy of gene delivery, it is advisable to have a better understanding of the molecular mechanism involved in the due process. The mechanism associated with the activity of the anti-HIV gene lies in their intrinsic property to impart resistance to the HIV infection by targeting the viral entry channels. This review principally emphasizes on different types of gene therapies explored so far for the management of AIDS and its associated neurological conditions. Therefore it could rightly be said that we are at the crossroad where the need of the hour is to develop novel strategies for curbing AIDS and its associated neurological conditions.


Author(s):  
Dora A. Lozsadi

Epilepsy is the commonest serious chronic neurological condition, affecting 0.5% of the population in the UK. Subjective sleep disturbance and excessive daytime sleepiness are reported to be 50% more frequent in those with epilepsy than in controls. Causes are multiple. Both poor seizure control and nocturnal attacks are known to contribute to such sleep disorders. Epilepsy also increases the risk of associated sleep disorders, and additional neurological conditions, such as dementia, learning disability, and depression. These all affect sleep hygiene. Prescribed anti-epileptic drugs will further aggravate the problem. Side-effects will include drowsiness. Sedating benzodiazepines and barbiturates are considered worst offenders. Others affect sleep architecture to varying degrees and/or cause insomnia. While hyper-somnolence in patients with epilepsy will raise the possibility of any of the above issues, sleep deprivation is one of the commonest seizure triggers. This chapter will shed more light on the intricate relationship between sleep and epilepsy.


Author(s):  
Adrián Yoris ◽  
Adolfo M. García ◽  
Paula Celeste Salamone ◽  
Lucas Sedeño ◽  
Indira García-Cordero ◽  
...  

Dimensional and transdiagnostic approaches have revealed multiple cognitive/emotional alterations shared by several neuropsychiatric conditions. While this has been shown for externally triggered neurocognitive processes, the disruption of interoception across neurological disorders remains poorly understood. This chapter aims to fill this gap while proposing cardiac interoception as a potential common biomarker across disorders. It focuses on key aspects of interoception, such as the mechanisms underlying different interoceptive dimensions; the relationship among interoception, emotion, and social cognition; and the roles of different interoceptive pathways. It considers behavioral and brain evidence in the context of an experimental and clinical agenda to evaluate the potential role of interoception as a predictor of clinical outcomes, a marker of neurocognitive deficits across diseases, and a general source of insights for breakthroughs in the treatment and prevention of multiple disorders. Finally, future directions to improve the dimensional and transdiagnostic assessment of interoception are outlined.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 890-890
Author(s):  
Andrei Irimia ◽  
Jun Kim ◽  
Shania Wang ◽  
Hyung Jun Lee ◽  
Van Ngo ◽  
...  

Abstract Estimating biological brain age (BA) has the potential of identifying individuals at relatively high risk for accelerated neurodegeneration. This study compares the brain’s chronological age (CA) to its BA and reveals the BA rate of change after mild traumatic brain injury (mTBI) in an aging cohort. Using T1-weighted magnetic resonance imaging (MRI) volumes and cortical thickness, volume, surface area, and Gaussian curvature obtained using FreeSurfer software; we formulated a multivariate linear regression to determine the rate of BA increase associated with mTBI. 95 TBI patients (age in years (y): μ = 41 y, σ = 17 y; range = 18 to 83) were compared to 462 healthy controls (HCs) (age: μ = 69 y, σ = 18 y; range = 25 to 95) over a 6-month time period following mTBI. Across the initial ~6 months following injury, patients’ BAs increased by ~3.0 ± 1.2 years due to their mTBIs alone, i.e., above and beyond typical brain aging. The superior temporal and parahippocampal gyri, two structures involved in memory formation and retrieval, exhibited the fastest rates of TBI-related BA. In both hemispheres, the volume of the hippocampus decreased (left: μ=0.28%, σ=4.40%; right: μ=0.12%, σ=4.84%). These findings illustrate BA estimation techniques’ potential to identify TBI patients with accelerated neurodegeneration, whose rate is strongly associated with the risk for dementia and other aging-related neurological conditions.


Sign in / Sign up

Export Citation Format

Share Document