Ultrathin graphitic carbon nitride modified PbBiO2Cl microspheres with accelerating interfacial charge transfer for the photodegradation of organic contaminants

Author(s):  
Qingsong Hu ◽  
Sheng Yin ◽  
Yi Ding ◽  
Ting Wu ◽  
Ming Li ◽  
...  
Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 983 ◽  
Author(s):  
I. Neelakanta Reddy ◽  
N. Jayashree ◽  
V. Manjunath ◽  
Dongseob Kim ◽  
Jaesool Shim

Recently, the engineering of optical bandgaps and morphological properties of graphitic carbon nitride (g-C3N4) has attracted significant research attention for photoelectrodes and environmental remediation owing to its low-cost synthesis, availability of raw materials, and thermal physical–chemical stability. However, the photoelectrochemical activity of g-C3N4-based photoelectrodes is considerably poor due to their high electron–hole recombination rate, poor conductivity, low quantum efficiency, and active catalytic sites. Synthesized Ni metal-doped g-C3N4 nanostructures can improve the light absorption property and considerably increase the electron–hole separation and charge transfer kinetics, thereby initiating exceptionally enhanced photoelectrochemical activity under visible-light irradiation. In the present study, Ni dopant material was found to evince a significant effect on the structural, morphological, and optical properties of g-C3N4 nanostructures. The optical bandgap of the synthesized photoelectrodes was varied from 2.53 to 2.18 eV with increasing Ni dopant concentration. The optimized 0.4 mol% Ni-doped g-C3N4 photoelectrode showed a noticeably improved six-fold photocurrent density compared to pure g-C3N4. The significant improvement in photoanode performance is attributable to the synergistic effects of enriched light absorption, enhanced charge transfer kinetics, photoelectrode/aqueous electrolyte interface, and additional active catalytic sites for photoelectrochemical activity.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1119
Author(s):  
Halyna Starukh ◽  
Petr Praus

This review outlines the latest research into the design of graphitic carbon nitride (g-C3N4) with non-metal elements. The emphasis is put on modulation of composition and morphology of g-C3N4 doped with oxygen, sulfur, phosphor, nitrogen, carbon as well as nitrogen and carbon vacancies. Typically, the various methods of non-metal elements introducing in g-C3N4 have been explored to simultaneously tune the textural and electronic properties of g-C3N4 for improving its response to the entire visible light range, facilitating a charge separation, and prolonging a charge carrier lifetime. The application fields of such doped graphitic carbon nitride are summarized into three categories: CO2 reduction, H2-evolution, and organic contaminants degradation. This review shows some main directions and affords to design the g-C3N4 doping with non-metal elements for real photocatalytic applications.


2019 ◽  
Vol 9 (3) ◽  
pp. 672-687 ◽  
Author(s):  
Zhi-Yu Liang ◽  
Ming-Hui Huang ◽  
Si-Yi Guo ◽  
Yan Yu ◽  
Wei Chen ◽  
...  

A reversed charge transfer pathway in photoredox catalysis has been achieved by rational structure engineering through electrostatically integrating g-C3N4 quantum dots with nanoporous CdS nanosheets.


2020 ◽  
Vol 24 (6) ◽  
pp. 673-693
Author(s):  
Haiyan Jiang ◽  
Yang Li ◽  
Daohan Wang ◽  
Xiaodong Hong ◽  
Bing Liang

Industrial wastewater contains abundant organic dyes, antibiotics, pesticides, chemical fertilizers or heavy metal ions, which seriously deteriorate the ecological environment. Among the practical techniques for reducing water pollution, photocatalysis is a kind of sustainable solar energy conversion technique for removing organic contaminants. In this review, the advances in the preparation, modification, and doping of graphitic carbon nitride (g-C3N4), including non-metal doping, metal doping, dual- or tri-doping, are introduced firstly. Then, we systematically reviewed the recent progress of g-C3N4/metal oxide composite photocatalysts, including a g-C3N4/n-type metal oxide, such as TiO2, ZnO, SnO2, WO3, FexOy, CeO2, V2O5, MoO3, MnO2, Nb2O5, In2O3, and a g-C3N4/p-type metal oxide, such as Co3O4, Bi2O3, NiO and Cu2O. At last, we summarized the design principles for preparing heteroatom doped g-C3N4 and g-C3N4/metal oxide composites, and forecast the promising research directions. The main objective is to provide a guideline for designing highperformance heteroatom doped g-C3N4 and g-C3N4/metal oxide photocatalysts.


Sign in / Sign up

Export Citation Format

Share Document