Development of a unique multi-layer perceptron neural architecture and mathematical model for predicting thermal conductivity of distilled water based nanofluids using experimental data

Author(s):  
Shiva Singh ◽  
Sumit Kumar ◽  
Subrata Kumar Ghosh
Author(s):  
Jurij Avsec ◽  
Maks Oblak

The paper features the mathematical model representing the analytical calculation of thermal conductivity for nanofluids. The mathematical model was developed on the basis of statistical nano-mechanics. We have made the detailed analysis of the influence of temperature dependence on thermal conductivity for nanofluids. On this basis are taken into account the influences such as formation of nanolayer around nanoparticles, the Brown motion of solid nanoparticles and influence of diffusive-ballistic heat transport. The analytical results obtained by statistical mechanics are compared with the experimental data and they show relatively good agreement.


2021 ◽  
Vol 63 (11-12) ◽  
pp. 907-914
Author(s):  
V. D. Sarychev ◽  
S. G. Molotkov ◽  
V. E. Kormyshev ◽  
S. A. Nevskii ◽  
E. V. Polevoi

Mathematical modeling of differentiated thermal processing of railway rails with air has been carried out. At the first stage, onedimensional heat conduction problem with boundary conditions of the third kind was solved analytically and numerically. The obtained temperature distributions at the surface of the rail head and at a depth of 20 mm from the rolling surface were compared with experimental data. As a result, value of the coefficients of heat transfer and thermal conductivity of rail steel was determined. At the second stage, mathematical model of temperature distribution in a rail template was created in conditions of forced cooling and subsequent cooling under natural convection. The proposed mathematical model is based on the Navier-Stokes and convective thermal conductivity equations for the quenching medium and thermal conductivity equation for rail steel. On the rail – air boundary, condition of heat flow continuity was set. In conditions of spontaneous cooling, change in temperature field was simulated by heat conduction equation with conditions of the third kind. Analytical solution of one-dimensional heat conduction equation has shown that calculated temperature values differ from the experimental data by 10 %. When cooling duration is more than 30 s, change of pace of temperature versus time curves occurs, which is associated with change in cooling mechanisms. Results of numerical analysis confirm this assumption. Analysis of the two-dimensional model of rail cooling by the finite element method has shown that at the initial stage of cooling, surface temperature of the rail head decreases sharply both along the central axis and along the fillet. When cooling duration is over 100 s, temperature stabilizes to 307 K. In the central zones of the rail head, cooling process is slower than in the surface ones. After forced cooling is stopped, heating of the surface layers is observed, due to change in heat flow direction from the central zones to the surface of the rail head, and then cooling occurs at speeds significantly lower than at the first stage. The obtained results can be used to correct differential hardening modes.


2012 ◽  
Vol 174-177 ◽  
pp. 2065-2070
Author(s):  
Shu Kui Zheng ◽  
Ming Fang Tang ◽  
Zhen Jing Yang

For insulation, green roof has been widely applied and researched in recent years. The effective thermal conductivity (ETC) of planting soil of green roof plays an important role to insulation. The ETC of six kinds of compound planting soil, usually used in green roof,were measured with different water content. The results show that the ETC of compound planting soils has linear relationship with weight humidity. A sensible, albeit simplified mathematical model, with weight humidity and dry apparent density as variables, was established for the dynamic ETC of compound planting soil. To verify model accuracy, the calculation data of ETC of compound planting soil, which under natural climatic conditions for 2 years, were compared with experimental data, and the results indicate that the model have high accuracy in a wide range of weight humidity. In additional, the ETC proper range of compound planting soil was derived.


2017 ◽  
Vol 59 (02) ◽  
pp. 10-13
Author(s):  
Trong Tam Nguyen ◽  
◽  
Hung Thang Bui ◽  
Ngoc Minh Phan ◽  
◽  
...  

2018 ◽  
Vol 15 (1) ◽  
pp. 169-181
Author(s):  
M. I. Sidorov ◽  
М. Е. Stavrovsky ◽  
V. V. Irogov ◽  
E. S. Yurtsev

Using the example of van der Pol developed a mathematical model of frictional self-oscillations in topochemically kinetics. Marked qualitative correspondence of the results of calculation performed using the experimental data of researchers.


Smart Science ◽  
2021 ◽  
pp. 1-14
Author(s):  
A. Arifutzzaman ◽  
Ahmad Faris Bin Ismail ◽  
Md Zahangir Alam ◽  
Ahsan Ali Khan ◽  
Navid Aslfattahi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1592
Author(s):  
Dominik Gryboś ◽  
Jacek S. Leszczyński ◽  
Dorota Czopek ◽  
Jerzy Wiciak

In this paper, we demonstrate how to reduce the noise level of expanded air from pneumatic tools. Instead of a muffler, we propose the expanded collecting system, where the air expands through the pneumatic tube and expansion collector. We have elaborated a mathematical model which illustrates the dynamics of the air flow, as well as the acoustic pressure at the end of the tube. The computational results were compared with experimental data to check the air dynamics and sound pressure. Moreover, the study presents the methodology of noise measurement generated in a pneumatic screwdriver in a quiet back room and on a window-fitting stand in a production hall. In addition, we have performed noise measurements for the pneumatic screwdriver and the pneumatic screwdriver on an industrial scale. These measurements prove the noise reduction of the pneumatic tools when the expanded collecting system is used. When the expanded collecting system was applied to the screwdriver, the measured Sound Pressure Level (SPL) decreased from 87 to 80 dB(A).


Sign in / Sign up

Export Citation Format

Share Document