The interaction of graphene oxide-silver nanoparticles with trypsin: Insights from adsorption behaviors, conformational structure and enzymatic activity investigations

2021 ◽  
Vol 202 ◽  
pp. 111688
Author(s):  
Hengyu Liu ◽  
Changchun Hao ◽  
Yanyan Zhang ◽  
Haiyan Yang ◽  
Runguang Sun
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2351
Author(s):  
Zheng Su ◽  
Daye Sun ◽  
Li Zhang ◽  
Miaomiao He ◽  
Yulin Jiang ◽  
...  

In this work, we designed and fabricated a multifunctional nanocomposite system that consists of chitosan, raspberry-like silver nanoparticles, and graphene oxide. The room temperature atmospheric pressure microplasma (RT-APM) process provides a rapid, facile, and environmentally-friendly method for introducing silver nanoparticles into the composite system. Our composite can achieve a pH controlled single and/or dual drug release. Under pH 7.4 for methyl blue loaded on chitosan, the drug release profile features a burst release during the first 10 h, followed by a more stabilized release of 70–80% after 40–50 h. For fluorescein sodium loaded on graphene oxide, the drug release only reached 45% towards the end of 240 h. When the composite acted as a dual drug release system, the interaction of fluorescein sodium and methyl blue slowed down the methyl blue release rate. Under pH 4, both single and dual drug systems showed a much higher release rate. In addition, our composite system demonstrated strong antibacterial abilities against E. coli and S. aureus, as well as an excellent photothermal conversion effect under irradiation of near infrared lasers. The photothermal conversion efficiency can be controlled by the laser power. These unique functionalities of our nanocomposite point to its potential application in multiple areas, such as multimodal therapeutics in healthcare, water treatment, and anti-microbials, among others.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sirapat Pipattanachat ◽  
Jiaqian Qin ◽  
Dinesh Rokaya ◽  
Panida Thanyasrisung ◽  
Viritpon Srimaneepong

AbstractBiofilm formation on medical devices can induce complications. Graphene oxide/silver nanoparticles (GO/AgNPs) coated nickel-titanium (NiTi) alloy has been successfully produced. Therefore, the aim of this study was to determine the anti-bacterial and anti-biofilm effects of a GO/AgNPs coated NiTi alloy prepared by Electrophoretic deposition (EPD). GO/AgNPs were coated on NiTi alloy using various coating times. The surface characteristics of the coated NiTi alloy substrates were investigated and its anti-biofilm and anti-bacterial effect on Streptococcus mutans biofilm were determined by measuring the biofilm mass and the number of viable cells using a crystal violet assay and colony counting assay, respectively. The results showed that although the surface roughness increased in a coating time-dependent manner, there was no positive correlation between the surface roughness and the total biofilm mass. However, increased GO/AgNPs deposition produced by the increased coating time significantly reduced the number of viable bacteria in the biofilm (p < 0.05). Therefore, the GO/AgNPs on NiTi alloy have an antibacterial effect on the S. mutans biofilm. However, the increased surface roughness does not influence total biofilm mass formation (p = 0.993). Modifying the NiTi alloy surface using GO/AgNPs can be a promising coating to reduce the consequences of biofilm formation.


Nano Research ◽  
2021 ◽  
Author(s):  
Yaping Feng ◽  
Haoyu Dai ◽  
Yi Zhang ◽  
Jianjun Chen ◽  
Fengxiang Chen ◽  
...  

2021 ◽  
Vol 216 ◽  
pp. 108788
Author(s):  
Wenfeng Zhou ◽  
Yuan Rao ◽  
Wei Zhuang ◽  
Lei Ge ◽  
Rijia Lin ◽  
...  

Cellulose ◽  
2014 ◽  
Vol 21 (6) ◽  
pp. 4261-4270 ◽  
Author(s):  
Soon Wei Chook ◽  
Chin Hua Chia ◽  
Sarani Zakaria ◽  
Mohd Khan Ayob ◽  
Nay Ming Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document