Determination of sensitivity coefficients of the elastic effective properties for periodic fiber-reinforced composites using the response function method

2008 ◽  
Vol 43 (4) ◽  
pp. 829-841 ◽  
Author(s):  
Marcin Kamiński
Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Federico J. Sabina ◽  
Yoanh Espinosa-Almeyda ◽  
Raúl Guinovart-Díaz ◽  
Reinaldo Rodríguez-Ramos ◽  
Héctor Camacho-Montes

The development of micromechanical models to predict the effective properties of multiphase composites is important for the design and optimization of new materials, as well as to improve our understanding about the structure–properties relationship. In this work, the two-scale asymptotic homogenization method (AHM) is implemented to calculate the out-of-plane effective complex-value properties of periodic three-phase elastic fiber-reinforced composites (FRCs) with parallelogram unit cells. Matrix and inclusions materials have complex-valued properties. Closed analytical expressions for the local problems and the out-of-plane shear effective coefficients are given. The solution of the homogenized local problems is found using potential theory. Numerical results are reported and comparisons with data reported in the literature are shown. Good agreements are obtained. In addition, the effects of fiber volume fractions and spatial fiber distribution on the complex effective elastic properties are analyzed. An analysis of the shear effective properties enhancement is also studied for three-phase FRCs.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987803 ◽  
Author(s):  
Hui Li ◽  
PengCheng Xue ◽  
Wanchong Rong ◽  
XiaoPeng Li ◽  
BangChun Wen

This article proposes frequency response function approximation method to identify mechanical parameters of fiber-reinforced composites. First, a fiber-reinforced composite thin plate is taken as a research object, and its natural characteristic and vibration response under pulse excitation are solved based on the Ritz method and mode superposition method, so that the theoretical calculation of frequency response function of such composite plates can be realized. Then, the identification principle based on frequency response function approximation method is illustrated and its correctness is validated by comparing with other published literature in the verification example, and the specific identification procedure is also proposed. Finally, frequency response function approximation method is applied in a study case, where the elastic moduli, Poisson’s ratios, and loss factors of the TC300 carbon/epoxy composite thin plate are identified, and the influences of boundary conditions, approximation points, total number of modes, and calculation step size on the identification accuracy and efficiency are discussed. It has been proved that the proposed method can identify mechanical parameters of fiber composite materials with high precision and efficiency.


Author(s):  
Nurul Zuhairah Mahmud Zuhudi ◽  
Afiq Faizul Zulkifli ◽  
Muzafar Zulkifli ◽  
Ahmad Naim Ahmad Yahaya ◽  
Nurhayati Mohd Nur ◽  
...  

In this paper, a short review on the void and moisture content studies of fiber reinforced composites for both, synthetic and natural based fibers are presented. The review summarized the research papers in which include experimental and theoretical works that related to the void and moisture content studies. In addition to that, this review paper highlighting a few research studies conducted in literature on the effects of the void and moisture on the mechanical performances of the composite. Few common measurement methods used for the void and moisture determination are discussed here. The aims of this short review, mainly to capture the trend ranging from the recent five years back and summarize the various studies and also to compare and conclude the most common method for the determination of the void and moisture content. This paper is mainly providing a baseline in the selection of the methods for the future work of the author’s work with regard to the reduction of the presence of voids and moisture occur during the impregnation process of fiber reinforced composites, especially when using natural-based fiber.


2019 ◽  
Vol 54 (8) ◽  
pp. 1031-1048 ◽  
Author(s):  
Yang Yang ◽  
Qi He ◽  
Hong-Liang Dai ◽  
Jian Pang ◽  
Liang Yang ◽  
...  

A micromechanical model for short fiber-reinforced composites (SFRCs) with functionally graded interphases and a systematic prediction scheme to determine the effective properties are presented. The matrix and the fibers are regarded to be linear elastic, isotropic, and homogeneous. Fibers are assumed to be ellipsoids coated perfectly by functionally graded interphases, which is supposed to be formed chemically or physically by the constituents near the interface. First, to analyze the grading interphase effect, layer-wise concept is followed to divide the functionally graded interphases into multi-homogeneous sub-layers. Next, to take the effect of functionally graded interphases into account, a combination of multi-inclusion method and Mori–Tanaka method is applied to predict effective elastic properties of this unidirectional SFRCs with respect to the content and aspect ratio of the inclusions. By employing coordinate transformation, spatially elastic moduli are obtained. Finally, Voigt homogenization scheme is used to obtain the overall, averaged, symmetrical elastic properties of the SFRCs. Numerical examples and analyses demonstrate the applicability of the proposed method and indicate the influences of graded interphase, orientation, and aspect ratio of inclusions as well as properties and contents of the constituents on the overall properties of SFRCs.


1989 ◽  
Vol 170 ◽  
Author(s):  
King H. Lo ◽  
Robert W. Schmitz ◽  
William G. Gottenberg

AbstractThe influence of flexible interlayers/interphases on the performance of unidirectional fiber reinforced composites is studied. Micromechanical analysis based on the embedded composite cylinders model is used to study the stiffness as well as the internal stress distributions within the matrix phase of composites. Based on the results of the analysis, a criterion is proposed for the selection of optimal interlayer thickness for fiber composites. The proposed criterion gives results which seem to correlate well with the experimental data published in the literature.


Sign in / Sign up

Export Citation Format

Share Document