Effect of probability-distance based Markovian texture extraction on discrimination in biological imaging

2008 ◽  
Vol 63 (1) ◽  
pp. 2-12 ◽  
Author(s):  
S.N. Ondimu ◽  
H. Murase
Author(s):  
Steve Lindaas ◽  
Chris Jacobsen ◽  
Alex Kalinovsky ◽  
Malcolm Howells

Soft x-ray microscopy offers an approach to transmission imaging of wet, micron-thick biological objects at a resolution superior to that of optical microscopes and with less specimen preparation/manipulation than electron microscopes. Gabor holography has unique characteristics which make it particularly well suited for certain investigations: it requires no prefocussing, it is compatible with flash x-ray sources, and it is able to use the whole footprint of multimode sources. Our method serves to refine this technique in anticipation of the development of suitable flash sources (such as x-ray lasers) and to develop cryo capabilities with which to reduce specimen damage. Our primary emphasis has been on biological imaging so we use x-rays in the water window (between the Oxygen-K and Carbon-K absorption edges) with which we record holograms in vacuum or in air.The hologram is recorded on a high resolution recording medium; our work employs the photoresist poly(methylmethacrylate) (PMMA). Following resist “development” (solvent etching), a surface relief pattern is produced which an atomic force microscope is aptly suited to image.


Author(s):  
K. N. Colonna ◽  
G. Oliphant

Harmonious use of Z-contrast imaging and digital image processing as an analytical imaging tool was developed and demonstrated in studying the elemental constitution of human and maturing rabbit spermatozoa. Due to its analog origin (Fig. 1), the Z-contrast image offers information unique to the science of biological imaging. Despite the information and distinct advantages it offers, the potential of Z-contrast imaging is extremely limited without the application of techniques of digital image processing. For the first time in biological imaging, this study demonstrates the tremendous potential involved in the complementary use of Z-contrast imaging and digital image processing.Imaging in the Z-contrast mode is powerful for three distinct reasons, the first of which involves tissue preparation. It affords biologists the opportunity to visualize biological tissue without the use of heavy metal fixatives and stains. For years biologists have used heavy metal components to compensate for the limited electron scattering properties of biological tissue.


2020 ◽  
Author(s):  
Ryan Weber ◽  
Martin McCullagh

<p>pH-switchable, self-assembling materials are of interest in biological imaging and sensing applications. Here we propose that combining the pH-switchability of RXDX (X=Ala, Val, Leu, Ile, Phe) peptides and the optical properties of coumarin creates an ideal candidate for these materials. This suggestion is tested with a thorough set of all-atom molecular dynamics simulations. We first investigate the dependence of pH-switchabiliy on the identity of the hydrophobic residue, X, in the bare (RXDX)<sub>4</sub> systems. Increasing the hydrophobicity stabilizes the fiber which, in turn, reduces the pH-switchabilty of the system. This behavior is found to be somewhat transferable to systems in which a single hydrophobic residue is replaced with a coumarin containing amino acid. In this case, conjugates with X=Ala are found to be unstable and both pHs while conjugates with X=Val, Leu, Ile and Phe are found to form stable β-sheets at least at neutral pH. The (RFDF)<sub>4</sub>-coumarin conjugate is found to have the largest relative entropy value of 0.884 +/- 0.001 between neutral and acidic coumarin ordering distributions. Thus, we posit that coumarin-(RFDF)<sub>4</sub> containing peptide sequences are ideal candidates for pH-sensing bioelectronic materials.</p>


2019 ◽  
Vol 26 (21) ◽  
pp. 4003-4028 ◽  
Author(s):  
Fangjun Huo ◽  
Yaqiong Zhang ◽  
Caixia Yin

In recent years, aldehyde-appended fluorescence probes have attracted increasing attention. Fluorescent biological imaging includes many modern applications for cell and tissue imaging in biomedical research. Meanwhile, the nucleophilic mechanism is a very simple and convenient procedure for the preparation of aldehyde-sensing probes. This tutorial review focuses on aldehyde-bearing chemosensors based on nucleophilic addition mechanism with biological applications.


2013 ◽  
Vol 13 (4) ◽  
pp. 488-503 ◽  
Author(s):  
Kyoung-Min Kim ◽  
Joo-Hee Kang ◽  
Ajayan Vinu ◽  
Jin-Ho Choy ◽  
Jae-Min Oh
Keyword(s):  

2021 ◽  
Vol 8 (8) ◽  
pp. 1867-1889
Author(s):  
Zhiming Xing ◽  
Wanhui Wu ◽  
Yongxiang Miao ◽  
Yingqun Tang ◽  
Youkang Zhou ◽  
...  

This review summarized recent advances relating to the luminescence properties of quinazolinones and their applications in fluorescent probes, biological imaging and luminescent materials. Their future outlook is also included.


Sign in / Sign up

Export Citation Format

Share Document