Quality estimation of nuts using deep learning classification of hyperspectral imagery

2021 ◽  
Vol 180 ◽  
pp. 105868
Author(s):  
Yifei Han ◽  
Zhaojing Liu ◽  
Kourosh Khoshelham ◽  
Shahla Hosseini Bai
2019 ◽  
Vol 11 (22) ◽  
pp. 2690 ◽  
Author(s):  
Yushi Chen ◽  
Lingbo Huang ◽  
Lin Zhu ◽  
Naoto Yokoya ◽  
Xiuping Jia

Hyperspectral remote sensing obtains abundant spectral and spatial information of the observed object simultaneously. It is an opportunity to classify hyperspectral imagery (HSI) with a fine-grained manner. In this study, the fine-grained classification of HSI, which contains a large number of classes, is investigated. On one hand, traditional classification methods cannot handle fine-grained classification of HSI well; on the other hand, deep learning methods have shown their powerfulness in fine-grained classification. So, in this paper, deep learning is explored for HSI supervised and semi-supervised fine-grained classification. For supervised HSI fine-grained classification, densely connected convolutional neural network (DenseNet) is explored for accurate classification. Moreover, DenseNet is combined with pre-processing technique (i.e., principal component analysis or auto-encoder) or post-processing technique (i.e., conditional random field) to further improve classification performance. For semi-supervised HSI fine-grained classification, a generative adversarial network (GAN), which includes a discriminative CNN and a generative CNN, is carefully designed. The GAN fully uses the labeled and unlabeled samples to improve classification accuracy. The proposed methods were tested on the Indian Pines data set, which contains 33,3951 samples with 52 classes. The experimental results show that the deep learning-based methods provide great improvements compared with other traditional methods, which demonstrate that deep models have huge potential for HSI fine-grained classification.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


2019 ◽  
Vol 9 (22) ◽  
pp. 4871 ◽  
Author(s):  
Quan Liu ◽  
Chen Feng ◽  
Zida Song ◽  
Joseph Louis ◽  
Jian Zhou

Earthmoving is an integral civil engineering operation of significance, and tracking its productivity requires the statistics of loads moved by dump trucks. Since current truck loads’ statistics methods are laborious, costly, and limited in application, this paper presents the framework of a novel, automated, non-contact field earthmoving quantity statistics (FEQS) for projects with large earthmoving demands that use uniform and uncovered trucks. The proposed FEQS framework utilizes field surveillance systems and adopts vision-based deep learning for full/empty-load truck classification as the core work. Since convolutional neural network (CNN) and its transfer learning (TL) forms are popular vision-based deep learning models and numerous in type, a comparison study is conducted to test the framework’s core work feasibility and evaluate the performance of different deep learning models in implementation. The comparison study involved 12 CNN or CNN-TL models in full/empty-load truck classification, and the results revealed that while several provided satisfactory performance, the VGG16-FineTune provided the optimal performance. This proved the core work feasibility of the proposed FEQS framework. Further discussion provides model choice suggestions that CNN-TL models are more feasible than CNN prototypes, and models that adopt different TL methods have advantages in either working accuracy or speed for different tasks.


Sign in / Sign up

Export Citation Format

Share Document