Extending the ability of cyclic carbonates for extracting BTEX to challenging low aromatic content naphtha: the designer solvent role at process scale

Author(s):  
Rubén Santiago ◽  
Cristian Moya ◽  
Elisa Hernández ◽  
Andu-Vlad Cojocaru ◽  
Pablo Navarro ◽  
...  
1983 ◽  
Author(s):  
Stephanie S. O'Malley ◽  
Chong S. Suh ◽  
Hans H. Strupp

2019 ◽  
Author(s):  
Shu Yu Chen ◽  
Shu-Chen Susan Chang ◽  
Chiu-Chu Lin ◽  
Qingqing Lou ◽  
Robert M. Anderson

2018 ◽  
Author(s):  
Robert Luxenhofer ◽  
Michael M Lübtow ◽  
Lukas Hahn ◽  
Thomas Lorson ◽  
Rainer Schobert

Many natural compounds with interesting biomedical properties share one physicochemical property, namely a low water solubility. Polymer micelles are, among others, a popular means to solubilize hydrophobic compounds. The specific molecular interactions between the polymers and the hydrophobic drugs are diverse and recently it has been discussed that macromolecular engineering can be used to optimize drug loaded micelles. Specifically, π-π stacking between small molecules and polymers has been discussed as an important interaction that can be employed to increase drug loading and formulation stability. Here, we test this hypothesis using four different polymer amphiphiles with varying aromatic content and various natural products that also contain different relative amounts of aromatic moieties. While in the case of paclitaxel, having the lowest relative content of aromatic moieties, the drug loading decreases with increasing relative aromatic amount in the polymer, the drug loading of curcumin, having a much higher relative aromatic content, is increased. Interestingly, the loading using schizandrin A, a dibenzo[a,c]cyclooctadiene lignan with intermediate relative aromatic content is not influenced significantly by the aromatic content of the polymers employed. The very high drug loading, long term stability, the ability to form stable highly loaded binary coformulations in different drug combinations, small sized formulations and amorphous structures in all cases, corroborate earlier reports that poly(2-oxazoline) based micelles exhibit an extraordinarily high drug loading and are promising candidates for further biomedical applications. The presented results underline that the interaction between the polymers and the incorporated small molecules are complex and must be investigated in every specific case.<br>


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 628
Author(s):  
Adolfo Benedito ◽  
Eider Acarreta ◽  
Enrique Giménez

The present paper describes a greener sustainable route toward the synthesis of NIPHUs. We report a highly efficient solvent-free process to produce [4,4′-bi(1,3-dioxolane)]-2,2′-dione (BDC), involving CO2, as renewable feedstock, and bis-epoxide (1,3-butadiendiepoxide) using only metal–organic frameworks (MOFs) as catalysts and cetyltrimethyl-ammonium bromide (CTAB) as a co-catalyst. This synthetic procedure is evaluated in the context of reducing global emissions of waste CO2 and converting CO2 into useful chemical feedstocks. The reaction was carried out in a pressurized reactor at pressures of 30 bars and controlled temperatures of around 120–130 °C. This study examines how reaction parameters such as catalyst used, temperature, or reaction time can influence the molar mass, yield, or reactivity of BDC. High BDC reactivity is essential for producing high molar mass linear non-isocyanate polyhydroxyurethane (NIPHU) via melt-phase polyaddition with aliphatic diamines. The optimized Al-OH-fumarate catalyst system described in this paper exhibited a 78% GC-MS conversion for the desired cyclic carbonates, in the absence of a solvent and a 50 wt % chemically fixed CO2. The cycloaddition reaction could also be carried out in the absence of CTAB, although lower cyclic carbonate yields were observed.


Author(s):  
Shahab Boroun ◽  
Abolfazl Alizadeh Sahraei ◽  
Abdol Hadi Mokarizadeh ◽  
Houshang Alamdari ◽  
Frédéric-Georges Fontaine ◽  
...  

2021 ◽  
Vol 6 (29) ◽  
pp. 7489-7498
Author(s):  
Anderson Gonzalez‐Vargas ◽  
Fernando Castro‐Gómez ◽  
Pedro J. Castro

Sign in / Sign up

Export Citation Format

Share Document