Estimation model of leaf nitrogen content based on GEP and leaf spectral reflectance

2022 ◽  
Vol 98 ◽  
pp. 107648
Author(s):  
Lechan Yang ◽  
Song Deng ◽  
Shouming Ma ◽  
Fangxiong Xiao
2001 ◽  
Vol 1 ◽  
pp. 81-89 ◽  
Author(s):  
Chwen-Ming Yang

Ground-based remotely sensed reflectance spectra of hyperspectral resolution were monitored during the growing period of rice under various nitrogen application rates. It was found that reflectance spectrum of rice canopy changed in both wavelength and reflectance as the plants developed. Fifteen characteristic wavebands were identified from the apparent peaks and valleys of spectral reflectance curves, in accordance with the results of the first-order differentiation, measured over the growing season of rice. The bandwidths and center wavelengths of these characteristic wavebands were different among nitrogen treatments. The simplified features by connecting these 15 characteristic wavelengths may be considered as spectral signatures of rice canopy, but spectral signatures varied with developmental age and nitrogen application rates. Among these characteristic wavebands, the changes of the wavelength in band 11 showed a positive linear relationship with application rates of nitrogen fertilizer, while it was a negative linear relationship in band 5. Mean reflectance of wavelengths in bands 1, 2, 3, 5, 11, and 15 was significantly correlated with application rates. Reflectance of these six wavelengths changed nonlinearly after transplanting and could be used in combination to distinguish rice plants subjected to different nitrogen application rates. From the correlation analyses, there are a variety of correlation coefficients for spectral reflectance to leaf nitrogen content in the range of 350-2400 nm. Reflectance of most wavelengths exhibited an inverse correlation with leaf nitrogen content, with the largest negative value (r = �0.581) located at about 1376 nm. Changes in reflectance at 1376 nm to leaf nitrogen content during the growing period were closely related and were best fitted to a nonlinear function. This relationship may be used to estimate and to monitor nitrogen content of rice leaves during rice growth. Reflectance of red light minimum and near-infrared peak and leaf nitrogen content were correlated nonlinearly.


Author(s):  
Caixia Yin ◽  
Jiao Lin ◽  
Lulu Ma ◽  
Ze Zhang ◽  
Tongyu Hou ◽  
...  

AbstractStudy the response mechanism of Canopy spectral reflectance (CSR) to cotton nitrogen fertilizer, propose the sensitive band and center wavelength of cotton leaf nitrogen content (LNC), and compare the response characteristics of various vegetation indexes to LNC, propose a vegetation index that responds well to LNC and construct estimating model. This experiment sets five nitrogen fertilizer levels, namely N0 (control), N120 (120 kg/hm2), N240 (240 kg/hm2), N360 (360 kg/hm2), N480 (480 kg/hm2). Among them, referring to the conventional nitrogen fertilizer is applied by local farmers (N330, 330 kg/hm2). The results showed the following: (1) Visible light and near-infrared (NIR) can be used as two large ranges for precise monitoring of nitrogen, especially the CSR in the NIR range differs significantly under different nitrogen fertilizers. In the early stage of cotton growth, the CSR decreased with the nitrogen application rate increase, in a suitable nitrogen environment (360 kg/hm2), and beyond N360, vice versa. In the later growth period, the CSR increases with the increase in nitrogen fertilizer. This trend is most evident in the short-wave NIR regions;(2) the range of 690–709 nm, 717–753 nm, and 940–958, which can be remote sensed by the spectral reflectance when cotton is affected in poor or rich nitrogen. The center wavelength corresponding to the nitrogen-sensitive band, respectively, are 697 nm, 735 nm, 953 nm, the band width can maintain 5–15 nm, generally not more than 20 nm;(3) compared with the ratio vegetation index, difference vegetation index, and normalized vegetation index, the combined vegetation index of more than two bands has a better effect on cotton LNC monitoring, of which the index (R560−R670)/(R560 + R670−R450), (R700−1.7 × R670 + 0.7 × R450)/(R700 + 2.3 × R670−1.3 × R450) are significantly related to LNC in this papers, and the correlation coefficients can reach, respectively, 0.935* and 0.936*. These findings help to estimate the model of LNC. The model is as follows: Y = 19.883 × x + 42.285, where x refers to the combined vegetation index (R700−1.7 × R670 + 0.7 × R450)/(R700 + 2.3 × R670−1.3 × R450), Y is LNC, but the model accuracy will be affected in the crop different phenological stage, and the model has the highest monitoring accuracy during the bud period.


2021 ◽  
Vol 13 (4) ◽  
pp. 739
Author(s):  
Jiale Jiang ◽  
Jie Zhu ◽  
Xue Wang ◽  
Tao Cheng ◽  
Yongchao Tian ◽  
...  

Real-time and accurate monitoring of nitrogen content in crops is crucial for precision agriculture. Proximal sensing is the most common technique for monitoring crop traits, but it is often influenced by soil background and shadow effects. However, few studies have investigated the classification of different components of crop canopy, and the performance of spectral and textural indices from different components on estimating leaf nitrogen content (LNC) of wheat remains unexplored. This study aims to investigate a new feature extracted from near-ground hyperspectral imaging data to estimate precisely the LNC of wheat. In field experiments conducted over two years, we collected hyperspectral images at different rates of nitrogen and planting densities for several varieties of wheat throughout the growing season. We used traditional methods of classification (one unsupervised and one supervised method), spectral analysis (SA), textural analysis (TA), and integrated spectral and textural analysis (S-TA) to classify the images obtained as those of soil, panicles, sunlit leaves (SL), and shadowed leaves (SHL). The results show that the S-TA can provide a reasonable compromise between accuracy and efficiency (overall accuracy = 97.8%, Kappa coefficient = 0.971, and run time = 14 min), so the comparative results from S-TA were used to generate four target objects: the whole image (WI), all leaves (AL), SL, and SHL. Then, those objects were used to determine the relationships between the LNC and three types of indices: spectral indices (SIs), textural indices (TIs), and spectral and textural indices (STIs). All AL-derived indices achieved more stable relationships with the LNC than the WI-, SL-, and SHL-derived indices, and the AL-derived STI was the best index for estimating the LNC in terms of both calibration (Rc2 = 0.78, relative root mean-squared error (RRMSEc) = 13.5%) and validation (Rv2 = 0.83, RRMSEv = 10.9%). It suggests that extracting the spectral and textural features of all leaves from near-ground hyperspectral images can precisely estimate the LNC of wheat throughout the growing season. The workflow is promising for the LNC estimation of other crops and could be helpful for precision agriculture.


2010 ◽  
Vol 67 (6) ◽  
pp. 624-632 ◽  
Author(s):  
Keila Rego Mendes ◽  
Ricardo Antonio Marenco

Global climate models predict changes on the length of the dry season in the Amazon which may affect tree physiology. The aims of this work were to determine the effect of the rainfall regime and fraction of sky visible (FSV) at the forest understory on leaf traits and gas exchange of ten rainforest tree species in the Central Amazon, Brazil. We also examined the relationship between specific leaf area (SLA), leaf thickness (LT), and leaf nitrogen content on photosynthetic parameters. Data were collected in January (rainy season) and August (dry season) of 2008. A diurnal pattern was observed for light saturated photosynthesis (Amax) and stomatal conductance (g s), and irrespective of species, Amax was lower in the dry season. However, no effect of the rainfall regime was observed on g s nor on the photosynthetic capacity (Apot, measured at saturating [CO2]). Apot and leaf thickness increased with FSV, the converse was true for the FSV-SLA relationship. Also, a positive relationship was observed between Apot per unit leaf area and leaf nitrogen content, and between Apot per unit mass and SLA. Although the rainfall regime only slightly affects soil moisture, photosynthetic traits seem to be responsive to rainfall-related environmental factors, which eventually lead to an effect on Amax. Finally, we report that little variation in FSV seems to affect leaf physiology (Apot) and leaf anatomy (leaf thickness).


Author(s):  
Lucas Prado Osco ◽  
Ana Paula Marques Ramos ◽  
Érika Akemi Saito Moriya ◽  
Maurício de Souza ◽  
José Marcato Junior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document