Assessing error in the 3D discontinuity-orientation distribution estimated by the Fouché method

2020 ◽  
Vol 119 ◽  
pp. 103293 ◽  
Author(s):  
Lei Huang ◽  
C. Hsein Juang ◽  
Huiming Tang
2006 ◽  
Vol 2006 (suppl_23_2006) ◽  
pp. 175-180
Author(s):  
G. Gómez-Gasga ◽  
T. Kryshtab ◽  
J. Palacios-Gómez ◽  
A. de Ita de la Torre

2018 ◽  
Vol 84 (7) ◽  
pp. 62-66
Author(s):  
K. V. Kurashkin

A method of ultrasonic control of the mechanical stresses which takes into account the heterogeneity of the material structure and does not require unloading of the structure or using reference samples is considered. The procedure is based on echo-method of measuring time of the bulk elastic wave propagation and determination of the relative values ν31 and ν32 related to the material structure and mechanical stresses. It is shown that stresses violate the linearity of the relationship observed between the parameters in the absence of the mechanical stresses in the rolled material. This effect formed a basis for developing a method of the deviator stress determination. The purpose of the study is to demonstrate the main advantages of the developed method against the known ultrasonic techniques used for evaluation of the mechanical stresses, give theoretical grounds to the effect which allows taking into account the heterogeneity of the material structure, and also to exemplify the procedure. An analytical expression is derived using bulk elastic wave velocity in an orthotropic material composed of cubic crystallites and an assumption on the existence of simple proportional relationship between the coefficients of the orientation distribution function in rolled metal. Presented results of the mathematical modeling confirm the experimentally observed linear dependence between the parameters ν31 and ν32 in the absence of mechanical stresses. The results of evaluating residual stresses in a welded steel plate are presented as an example of the applicability of the developed procedure. Data of ultrasonic technique and data of strain gage measurements are compared. The features of the described method of stress determination are marked and the applicability limits are specified.


2019 ◽  
Vol 85 (5) ◽  
pp. 28-32
Author(s):  
A. S. Kolyanova ◽  
Y. N. Yaltsev

A calculation method for obtaining the misorientation distribution function (MDF) for cubic crystals which can be used to estimate the presence or absence of special boundaries in the materials is presented. The calculation was carried out for two samples of Al-Mg-Si alloy subjected to various mechanical and thermal treatments: the first sample is subjected to rolling; the second sample is subjected to recrystallization annealing. MDF is calculated for each sample; the results are presented in the Euler space and in the angle-axis space. The novelty of the method consists in the possibility of gaining data on the grain boundaries from X-ray texture analysis without using electron microscopy. A calculation involving only mathematical operations on matrices was performed on the basis of the orientation distribution function restored from incomplete pole figures. It is shown that no special boundaries are observed in the deformed sample, whereas in the recrystallized alloy, special boundaries are detected at Ʃ = 23, 13, and 17. The shortcoming of the proposed method can be attributed to the lack of accurate data on grain boundaries, since all possible orientation in the polycrystal should be taken into account in MDF calculation.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 344
Author(s):  
Jian Feng ◽  
Stefan Barth ◽  
Marc Wettlaufer

Austenite grains that underwent the f.c.c. to b.c.c. (or b.c.t.) transformation are typically composed of 24 Kurdjumov–Sachs variants that can be categorized by three axes of Bain transformations; thus, a complete transformation generally displays 3-fold symmetry in (001) pole figures. In the present work, crystallographic symmetry in 42CrMo4 steel austempered below martensite start temperature was investigated with the help of the orientation distribution function (ODF) analysis based on the FEG-SEM/EBSD technique. It is shown that, upon phase transformations, the specimens contained 6-fold symmetry in all (001), (011), and (111) pole figures of an ODF. The ODF analysis, verified by theoretical modeling, showed that under plane-strain conditions cracks prefer to propagate through areas strongly offset by the high symmetry. The origin of high symmetry was investigated, and the mechanism of the symmetry breakdown was explained.


2021 ◽  
Vol 11 (15) ◽  
pp. 7126
Author(s):  
Wei Yang ◽  
Pei Hu

Fiber additive will induce the rheological behavior of suspension, resulting in variation in velocity profile and fiber orientation especially for the non-dilute case. Based on the fluid-solid coupling dynamics simulation, it shows that the fiber orientation aligns along the streamline more and more quickly in the central turbulent region as the fiber concentration increases, especially contract ratio Cx > 4. However, fibers tend to maintain the original uniform orientation and are rarely affected by the contract ratio in the boundary layer. The fibers orientation in the near semi-dilute phase is lower than that in the dilute phase near the outlet, which may be the result of the hydrodynamic contact lubrication between fibers. The orientation distribution and concentration of the fibers change the viscous flow mechanism of the suspension microscopically, which makes a velocity profile vary with the phase concentration. The velocity profile of the approaching semi-dilute phase sublayer is higher than that of the dilute and semi-dilute phases on the central streamline and in the viscous bottom layer, showing weak drag reduction while the situation is opposite on the logarithmic layer of the boundary layer. The relevant research can provide a process strategy for fiber orientation optimization and rheological control in the industrial applications of suspension.


1994 ◽  
Vol 343 ◽  
Author(s):  
J. A. Floro ◽  
C. V. Thompson

ABSTRACTAbnormal grain growth is characterized by the lack of a steady state grain size distribution. In extreme cases the size distribution becomes transiently bimodal, with a few grains growing much larger than the average size. This is known as secondary grain growth. In polycrystalline thin films, the surface energy γs and film/substrate interfacial energy γi vary with grain orientation, providing an orientation-selective driving force that can lead to abnormal grain growth. We employ a mean field analysis that incorporates the effect of interface energy anisotropy to predict the evolution of the grain size/orientation distribution. While abnormal grain growth and texture evolution always result when interface energy anisotropy is present, whether secondary grain growth occurs will depend sensitively on the details of the orientation dependence of γi.


Sign in / Sign up

Export Citation Format

Share Document