Damage characterization of 3D braided composites using carbon nanotube-based in situ sensing

2010 ◽  
Vol 41 (10) ◽  
pp. 1531-1537 ◽  
Author(s):  
Kyoung Ju Kim ◽  
Woong-Ryeol Yu ◽  
Joon Seok Lee ◽  
Limin Gao ◽  
Erik T. Thostenson ◽  
...  
2009 ◽  
Vol 1240 ◽  
Author(s):  
Ji-Ye Kang ◽  
Su-Mi Eo ◽  
Loon-Seng Tan ◽  
Jong-Beom Baek

AbstractSingle-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) were functionalized with 3,4-diaminobenzoic acid via “direct” Friedel-Crafts acylation reaction in PPA/P2O5 to afford ortho-diamino-functionalized SWCNT (DIF-SWCNT) and MWCNT (DIF-MWCNT). The resultant DIF-SWCNT and DIF-MWCNT showed improved solubility and dispersibility. To improve interfacial adhesion between CNT and polymer matrix, the grafting of ABPBI onto the surface of DIF-SWCNT (10 wt%) or DIF-MWCNT (10 wt%) was conducted by simple in-situ polymerization of AB monomer, 3,4-diaminobenzoic acid dihydrochloride, in PPA. The resultant ABPBI-g-MWCNT and ABPBI-g-SWCNT showed improved the mechanical and electrical properties.


1993 ◽  
Vol 29 (10) ◽  
pp. 3417-3431 ◽  
Author(s):  
G. L. Moltyaner ◽  
C. A. Wills

2021 ◽  
Author(s):  
Chetan Laddha ◽  
Lorna Ortiz-Soto ◽  
Leslie Baksmaty ◽  
Juan Dominguez-Olivo

Abstract The O&G industry has been producing hydrocarbons from subsea reservoirs for several decades. However, there is a technological gap in the ability to reliably detect and quantify dissolved gases within the water column. This technological gap has in turn led to a scientific gap in our ability to determine the subsurface origin of subsea fluid emissions. Gas releases are commonly found in the marine environment primarily because of naturally occurring seeps and occasionally due to Oil and Gas production activities. There is a need to be able to identify the gas composition and accurately characterize its source (i.e., ongoing microbial activity or thermogenic derived hydrocarbons). However, building a reliable solution which allows this differentiation between thermal and microbial sources in the underwater environment as well as the inference of their subsurface origin requires a multi-disciplinary subsurface workflow coupled comprehensive high-fidelity measurements at the seabed. As one of the front-end building blocks of any robust multi-disciplinary workflow, there is a need for development of an in-situ sensing and sampling capability which allows real-time assessment and geological characterization of the underwater emissions across the upstream industry, from exploration to abandonment. Such a capability would also be complementary to the geohazard and subsurface assessment practices e.g., by reducing lost rig time during interventions by allowing quick characterization of emissions that arise from natural seeps or LOPC (Loss of Primary Containment) events. This paper describes the maturation of a compact underwater in-situ sensing technology deployed from autonomous or tethered underwater vehicles and which enables measurements of gas constituents and their respective isotopes at the seabed.


Carbon ◽  
2012 ◽  
Vol 50 (10) ◽  
pp. 3859-3867 ◽  
Author(s):  
Shu Li ◽  
Jin Gyu Park ◽  
Zhiyong Liang ◽  
Theo Siegrist ◽  
Tao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document