Strain-rate effects in Ni/Al composite metal foams from quasi-static to low-velocity impact behaviour

Author(s):  
A. Jung ◽  
A.D. Pullen ◽  
W.G. Proud
2013 ◽  
Vol 465-466 ◽  
pp. 1395-1399
Author(s):  
Ainullotfi Abdul-Latif ◽  
Mohd Hasrizam Che Man ◽  
S. Mansor

Composite materials are widely used in aircraft, automotive, marine and railway applications and are exposed to impact loads, in particular low velocity impact. As material properties of composites are affected by strain-rate [, finite element analysis (FEA) by using static properties would not predict their impact behaviour accurately. Thus, the objective of this study was to include strain-rate effects in the simulation of composite laminates under low velocity impact. This was achieved using ABAQUS anisotropic damage model (ADM) by taking account of material properties changes as a function of log strain-rate using user-defined ABAQUS/VUSDFLD subroutine Strain-Rate Dependent ADM (SRD ADM). Results obtained from SRD ADM were validated using simple tensile test done by Okoli [. Subsequently a three-point bending impact event of a simple composite laminate beam by a cylindrical steel impactor was simulated using both the original ABAQUS Static ADM and the user-defined SRD ADM, and compared with experimental impact test results done by [. The results show that reductions in errors of predicted maximum impact reaction force (compared to experimental data) were achieved from 29% using Static ADM to 14% using SRD ADM and from 35% using Static ADM to 15% using SRD ADM respectively for impactor speeds of 2 ms-1 and 5 ms-1.


2016 ◽  
Vol 827 ◽  
pp. 145-148 ◽  
Author(s):  
Sneha Samal ◽  
David Reichmann ◽  
Iva Petrikova ◽  
Bohdana Marvalova

Low velocity impact strength of the fabric reinforced geocomposite has investigated in this article. Various fabrics such as carbon and E-glass were considered for reinforcement in geopolymer matrix. The primary two parameters such as low velocity, impact damage modes are explained on the E-glass and carbon based fabric geocomposite. The onset mode of damage to failure mode is examined through C-scan analysis. The quality of the composite is observed using c-scan with acoustic vibration mode of sensor before and after impact test. Then the effect of fabric and matrix on the impact behaviour is discussed. Residual strength of the composite is measured to determine post impact behaviour. It has been observed that resistance properties of E-glass reinforced composite is better than carbon fabric reinforced composite.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012073
Author(s):  
Xueyao Hu ◽  
Jiaojiao Tang ◽  
Wei Xiao ◽  
Kepeng Qu

Abstract A progressive damage model was presented for carbon fiber woven composites under low velocity impact, considering the strain rate sensitivity of both mechanical properties and failure mechanisms. In this model, strain rate dependency of elastic modulus and nominal strength along in-plane direction are considered. Based on the Weibull distribution, stiffness progressive degradation is conducted by introducing strain rate dependent damage variables for distinct damage modes. With the model implemented in ABAQUS/Explicit via user-defined material subroutine (VUMAT), the mechanical behavior and possible damage modes of composites along in-plane direction can be determined. Furthermore, a bilinear traction separation model and a quadratic stress criterion are applied to predict the initiation and evolution of interlaminar delamination. Comparisons are made between the experimental results and numerical simulations. It is shown that the mechanical response and damage characteristics under low velocity impact, such as contact force history and delamination, are more consistent with the experimental results when taken the strain rate effect into consideration.


2014 ◽  
Vol 62 ◽  
pp. 88-96 ◽  
Author(s):  
G. Simeoli ◽  
D. Acierno ◽  
C. Meola ◽  
L. Sorrentino ◽  
S. Iannace ◽  
...  

Sadhana ◽  
2014 ◽  
Vol 39 (6) ◽  
pp. 1497-1507 ◽  
Author(s):  
SMITHA GOPINATH ◽  
R AYASHWARYA ◽  
V RAMESH KUMAR ◽  
PRABHAT RANJAN PREM ◽  
A RAMA CHANDRA MURTHY ◽  
...  

2017 ◽  
Vol 54 ◽  
pp. 73-91 ◽  
Author(s):  
G. Gruben ◽  
S. Sølvernes ◽  
T. Berstad ◽  
D. Morin ◽  
O.S. Hopperstad ◽  
...  

2000 ◽  
Author(s):  
Uday K. Vaidya ◽  
Scott P. Nelson ◽  
Biju Mathew ◽  
Renee M. Rodgers ◽  
Mahesh V. Hosur

Abstract This paper deals with an innovative integrated hollow (space) E-glass/epoxy core sandwich composite construction that possesses several multi-functional benefits in addition to the providing light-weight and bending stiffness advantages. In comparison to traditional foam and honeycomb cores, the integrated space core provides a means to route wires/rods, embed electronic assemblies, and store fuel and fire-retardant foam, among other conceivable benefits. In the current work the low velocity impact (LVI) response of innovative integrated sandwich core composites was investigated. Three thickness of integrated and functionality-embedded E-glass/epoxy sandwich cores were considered in this study — including 6mm, 9mm and 17 mm. The low-velocity impact results indicated that the hollow and functionality embedded integrated core suffered a localized damage state limited to a system of core members in the vicinity of the impact. Stacking of the core was an effective way of improving functionality and limiting the LVI damage in the sandwich plate. The functionality-embedded cores provided enhanced LVI resistance due to energy additional energy absorption mechanisms. The high strain rate (HSR) impact behavior of these sandwich constructions is also studied using a Split Hopkinson Pressure Bar (SHPB) at strain rates ranging from 163 to 653 per second. The damage initiation, progression and failure mechanisms under low velocity and high strain rate impact are investigated through optical and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document