Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste

Author(s):  
Xiangyu Li ◽  
Zeyu Lu ◽  
Samuel Chuah ◽  
Wengui Li ◽  
Yanming Liu ◽  
...  
2010 ◽  
Vol 45 (12) ◽  
pp. 3169-3174 ◽  
Author(s):  
D. Gastaldi ◽  
F. Canonico ◽  
S. Irico ◽  
D. Pellerej ◽  
M. C. Paganini

2021 ◽  
Vol 10 (1) ◽  
pp. 768-778
Author(s):  
Shaoqiang Meng ◽  
Xiaowei Ouyang ◽  
Jiyang Fu ◽  
Yanfei Niu ◽  
Yuwei Ma

Abstract Graphene (G) and graphene oxide (GO) have been shown to significantly improve the mechanical properties of cement-based materials. In this study, the effect of the G/GO on cement hydration was investigated. First, the zeta potential of G/GO in simulated solutions was tested, and the interaction between G/GO’s surface and Ca2+ was explored. Subsequently, scanning electron microscopy was used to observe the morphology of C–S–H nucleation and growth on the cement surface in the cement paste containing G/GO. Furthermore, XRD and TGA analyses were carried out on the hydration products of the sample. At last, isothermal calorimetry was applied to investigate the influence of G/GO on the early hydration of cement. The results showed that the addition of G/GO significantly accelerates C–S–H nucleation and growth on the cement surface. It is indicated that the high mobility ions derived by G/GO in the cement paste dominate the reason for the accelerated hydration of cement. The presence of G, especially GO, facilitates the mobility of ions, especially Ca2+, thus enhances the interaction between the cement surface and the ions. This strong interaction promotes the C–S–H nucleation and growth, and therefore, the hydration of the cement.


2020 ◽  
Vol 265 ◽  
pp. 120311
Author(s):  
Kavya Vallurupalli ◽  
Weina Meng ◽  
Jianhui Liu ◽  
Kamal H. Khayat

2017 ◽  
Vol 908 ◽  
pp. 71-75 ◽  
Author(s):  
Giedrius Girskas

Durability is one of the main characteristics in the production of high-quality concrete paving blocks in the Baltic region climate zone. Concrete paving blocks are produced by means of vi bropressing , dimensions: 198×98×80 mm . The article describes tests with concrete paving blocks, the top layer of which contains 5% of zeolite admixture obtained from waste of aluminum fluoride production by low-temperature synthesis. The durability of concrete paving blocks was tested according to abrasion resistance, tensile splitting strength, absorption and frost resistance. The test results revealed that 5% of zeolite admixture added to the top layer of concrete paving blocks reduce the absorption, increase the tensile splitting strength and decrease abrasion. The zeolite admixture used in concrete paving blocks reduces the scaling about 4 times after 28 freeze-thaw cycles when 3% NaCl is used as the freezing solution. The test results proved that synthetic zeolite obtained from aluminum fluoride by means of low temperature synthesis can be used as a supplementary cementitious material to increase the durability of concrete pavement elements.


2018 ◽  
Vol 111 ◽  
pp. 169-182 ◽  
Author(s):  
Sam Ghazizadeh ◽  
Philippe Duffour ◽  
Neal T. Skipper ◽  
Yun Bai

2011 ◽  
Vol 306-307 ◽  
pp. 1024-1028
Author(s):  
Qiu Ying Li ◽  
Ling Chao Lu ◽  
Shou De Wang

Synthesis conditions and performance of alite-strontium calcium sulphoaluminate cement have been studied by introducing strontium calcium sulphoaluminate into Portland cement clinker. The effects of gypsum on compressive strength, hydration degree and structure of hardened alite-strontium calcium sulphoaluminate cement paste were studied in this paper. Composition and structure of the hardened cement paste were analyzed by XRD and SEM. Results show that appropriate content of gypsum could contribute to the hydration of alite-strontium calcium sulphoaluminate cement. When gypsum content is 9%, the compressive strengths for 1d, 3d and 28d curing age are 30.7MPa, 59.5MPa and 105.5MPa, and the corresponding hydration degree are 40.4%, 57.5% and 85.8%, respectively. The hydration products of alite-strontium calcium sulphoaluminate cement are mainly ettringite (AFt), Ca(OH)2, C-S-H gel. Large amount of AFt formed at early curing age provides a sound basis for early compressive strength, and a lot of C-S-H gel generated at later curing age increases the density of the hardened paste.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Gang Ma ◽  
Yu Zhang ◽  
Zhu Li

Lightweight aggregate concrete consisting of glazed hollow bead (GHB) as lightweight aggregate is studied for the influence of nanosilica (NS) content, prewetting time for GHB, water-cement ratio, and curing humidity, on the interface structure between GHB and cement paste. This research analyzed the influences of various factors on the interface zone structure by measuring microhardness (HV) and hydration degree of cement paste (HD) nearby the interface zone (1 mm) between GHB and cement paste at different periods of aging. Due to the sampling limitation, the interface zone in this test is within 1 mm away from the surface of lightweight aggregate. The HD of cement paste was determined through chemically combined water (CCW) test. The results were expected to reflect the influence of various factors on the interface zone structure. Results showed that the rational control of the four factors studied could fully mobilize the water absorption and desorption properties of GHB to improve the characteristics of the interfacial transition zone.


Sign in / Sign up

Export Citation Format

Share Document