Correlation Between Tensile Splitting Strength and Flexural Strength of Concrete

10.14359/7840 ◽  
1963 ◽  
Vol 60 (1) ◽  
2008 ◽  
Vol 5 (2) ◽  
pp. 21
Author(s):  
Kartini Kamaruddin ◽  
Hamidah Mohd Saman

It is shown that some of the wastes have properties that would improve the quality of concrete produced. One such waste is agricultural waste rice husk, which constitutes about one-fifth of 600 million tones of rice produced annually in the world. The performance of RHA concrete was found to be varied among those of researchers and most of the studies encompassed for the utilisation of high grade concrete. This paper reported the investigation carried out on the mechanical properties of normal strength concrete of grade 30 N/mm2 with various partial replacement level of ordinary Portland cement (OPC) with Rice Husk Ash (RHA). Two(2) batches of same grade of concrete with and without use of superplasticiser (Sp) were adopted. The mechanical properties evaluated are in terms of compressive strength, flexural strength and tensile splitting strength of RHA concrete with and without superplasticiser (Sp). The results show that the optimum replacement level of RHA was 20 % and with the addition of Sp the replacement of RHA was taken as 40 %. However, the results of the study show that the performance in term of flexural strength and tensile splitting strength does not significantly improved with the replacement of cement with RHA.


2010 ◽  
Vol 168-170 ◽  
pp. 1535-1538
Author(s):  
Zhi Min He ◽  
Jun Zhe Liu ◽  
Tian Hong Wang

In precast concrete elements manufacturing, steam-cured concrete incorprating 30% mineral admixtures encountered the problem of too low demoulding compressive strength. To resolve it, this paper mainly studied the influence of mineral admixtures on the compressive strength, the tensile-splitting strength and the flexural strength of the steam-cured concrete. The experimental results indicated that, compared with steam-cured concrete incorprating mineral admixtures, the later strength of steam-cured concrete incorprating 0% mineral admixtures has lower increment degree and its increment of tensile-splitting strength and flexural strength inverted to some extent. The demoulding compressive strength is too low for the high volume fly ash concrete mixtures. The problem of too low demoulding compressive strength is solved by incorprating composites of ground blast furnace slag(GBFS) and fly ash. Different varieties of mineral admixture used in the concretes can produce a certain degree of potentiation.


2014 ◽  
Vol 13 (4) ◽  
pp. 137-144
Author(s):  
Małgorzata Konopska-Piechurska ◽  
Wioletta Jackiewicz-Rek ◽  
Paweł Łukowski

In the paper the results of experiments on concrete pavement with exposed aggregate technology placed in two technological layers were presented. The following properties were measured: compressive strength, flexural strength by two methods: two-point loading and centre-point loading, tensile splitting strength of cubic and cylindrical samples. The study was performed for two type of concrete with a maximum aggregate size Dmax 8 mm (concrete applied to the upper layer of concrete pavement - GWB) and Dmax 22 mm (concrete used for the bottom layer - DWB). After the analysis of the tests, the correlations between compressive strength and tensile strength, measured by flexural strength and tensile splitting strength, were determined for the used two-layers concrete pavement with exposed aggregate depending on applied Dmax.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2612
Author(s):  
Piotr Smarzewski

This study investigates the fracture properties of high performance cementitious composites (HPCC) with four different types of fibres and with volume fraction content 3%. The four fibres are steel hooked end (S), polypropylene crimped (PP), basalt chopped (B), and glass (G) fibres. The tests were carried out in accordance with the RILEM recommendations. In order to examine the fresh properties of HPCC the slump flow tests were performed. Twelve fibre reinforced HPCC beam specimens with notch were cast and tested using central point loading experiments. In addition, experimental tests of the compressive strength and splitting tensile strength were carried out. The test results made it possible to obtain representative fracture parameters, such as the equivalent strengths, residual strengths, and fracture energy of fibre reinforced HPCC. The S fibre specimens showed the best performance in terms of workability, compressive strength, tensile splitting strength, and fracture energy at large deflection. On the other hand, G fibre specimens exhibited the best performance in terms of flexural strength, equivalent flexural strength at higher deflection, and residual flexural strength at lower deflection. In terms of equivalent flexural strength at lower deflection and residual flexural strength at higher deflection, basalt fibre specimens performed the best. On the contrary, polypropylene fibre reinforced beam specimens revealed the highest deflection capacity.


2017 ◽  
Vol 908 ◽  
pp. 71-75 ◽  
Author(s):  
Giedrius Girskas

Durability is one of the main characteristics in the production of high-quality concrete paving blocks in the Baltic region climate zone. Concrete paving blocks are produced by means of vi bropressing , dimensions: 198×98×80 mm . The article describes tests with concrete paving blocks, the top layer of which contains 5% of zeolite admixture obtained from waste of aluminum fluoride production by low-temperature synthesis. The durability of concrete paving blocks was tested according to abrasion resistance, tensile splitting strength, absorption and frost resistance. The test results revealed that 5% of zeolite admixture added to the top layer of concrete paving blocks reduce the absorption, increase the tensile splitting strength and decrease abrasion. The zeolite admixture used in concrete paving blocks reduces the scaling about 4 times after 28 freeze-thaw cycles when 3% NaCl is used as the freezing solution. The test results proved that synthetic zeolite obtained from aluminum fluoride by means of low temperature synthesis can be used as a supplementary cementitious material to increase the durability of concrete pavement elements.


2011 ◽  
Vol 374-377 ◽  
pp. 1619-1622
Author(s):  
Ling Zhang ◽  
Zhi Qiang Shi

In this article, based on a certain actual project, the main physical and mechanical performance including compressive strength, splitting strength, flexural strength and shear strength are studied in detail through the experiments. Different fiber types and volume ratio are chosen in the experiments for the purpose of determining the best quantities and types of steel fiber in concrete to lengthen the service life of deck pavements. It is showed that the research has some referential value for similar projects.


2021 ◽  
Vol 47 (1) ◽  
pp. 56-60
Author(s):  
Kamel Al-Zboon ◽  
Talal Masoud

Huge amounts of stone cutting waste are generated annually posing a heavy environmental load on nature and resulting in economic challenge to the plants' owners. The conducted researches in this field showed that stone, marble and granite waste could be reused in many applications. This paper aims to investigate the possible application of stone cutting waste in the construction sector. Review process includes investigation of the conducted researches, outcomes of the performed projects, and the impact of this waste on the characteristics of concrete compressive strength, flexural strength, splitting strength, concrete workability, bricks strength, terrazzo tile strength and soil properties. The results revealed that at suitable substitution ratio, this waste can increase the compressive strength of concrete up to 21%, the flexural strength by 33% and splitting strength by 4.3%. In contrast, the compressive strength of bricks decreased by up to 67% at replacement ratio of 100%, and the transverse strength of tiles decreased up to 18% at replacement ratio of 50%. Replacement of soil with stone cutting waste resulted in an improvement in the characteristics of cohesive and sandy soil. Concrete workability decreased significantly with replacement of normal aggregate with stone cutting waste. Such results buttressed the feasibility of reusing this material in the construction sector, which reduces the cost of storage and disposal, and creates a nonconventional income.


Sign in / Sign up

Export Citation Format

Share Document