cement surface
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 10 (1) ◽  
pp. 768-778
Author(s):  
Shaoqiang Meng ◽  
Xiaowei Ouyang ◽  
Jiyang Fu ◽  
Yanfei Niu ◽  
Yuwei Ma

Abstract Graphene (G) and graphene oxide (GO) have been shown to significantly improve the mechanical properties of cement-based materials. In this study, the effect of the G/GO on cement hydration was investigated. First, the zeta potential of G/GO in simulated solutions was tested, and the interaction between G/GO’s surface and Ca2+ was explored. Subsequently, scanning electron microscopy was used to observe the morphology of C–S–H nucleation and growth on the cement surface in the cement paste containing G/GO. Furthermore, XRD and TGA analyses were carried out on the hydration products of the sample. At last, isothermal calorimetry was applied to investigate the influence of G/GO on the early hydration of cement. The results showed that the addition of G/GO significantly accelerates C–S–H nucleation and growth on the cement surface. It is indicated that the high mobility ions derived by G/GO in the cement paste dominate the reason for the accelerated hydration of cement. The presence of G, especially GO, facilitates the mobility of ions, especially Ca2+, thus enhances the interaction between the cement surface and the ions. This strong interaction promotes the C–S–H nucleation and growth, and therefore, the hydration of the cement.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Marie Le Pivert ◽  
Romain Poupart ◽  
Martine Capochichi-Gnambodoe ◽  
Nathan Martin ◽  
Yamin Leprince-Wang

AbstractPhotocatalysis is one of the most promising processes for treating air and water pollution. Innovative civil engineering materials for environmental depollution by photocatalysis have already been synthesized by incorporating TiO2 or ZnO nanoparticles in cement. This method suffers from two flaws: first, most of the NPs are incorporated into the cement and useless for photocatalysis; second, rain and wind could spread the potentially carcinogenic nanoparticles from the cement surface into nature. Thus, we propose the efficient synthesis of nontoxic and biocompatible ZnO nanostructures solely onto the surface of commercially available concrete and tiling pavements by a low-cost and low-temperature hydrothermal method. Our samples exhibited enhanced photocatalytic activity for degrading organic dyes in aqueous media, and dye molecules are commonly used in the pharmaceutical, food, and textile industries. Durability studies showed no loss of efficiency after four photocatalysis experiments. Such supported structures, which are easy to implement onto the varying surfaces of commercially available materials, are promising for integration into civil engineering surfaces for environmental depollution in our daily life.


Author(s):  
Du Jiang ◽  
Gongfa Li ◽  
Ying Sun ◽  
Jianyi Kong ◽  
Bo Tao ◽  
...  

2018 ◽  
Vol 43 (6) ◽  
pp. 613-618
Author(s):  
S Kucukkaya Eren ◽  
H Aksel ◽  
O Uyanık ◽  
E Nagas

ABSTRACT This study aimed to evaluate the morphological and elemental changes that occur on the surface of calcium silicate–based cement (CSC) and to analyze the bond strength of composite resin to CSC after application of various bleaching agents. One hundred twenty-five CSC blocks (Biodentine) were prepared and randomly divided into five groups according to the bleaching agent applied over the material surface (n=25): SP-DW (sodium perborate–distilled water mixture), SP-HP (sodium perborate–3% hydrogen peroxide [H2O2] mixture), CP (37% carbamide peroxide gel), HP (35% H2O2 gel), and a control group (no bleaching agent). After 1 week, scanning electron microscopy provided an analysis of the surface morphology and elemental composition for 10 specimens from each group. Composite resin was placed at the center of each cement surface in the remaining specimens (n=15). A universal testing machine determined shear bond strength (SBS) and fracture patterns were identified with a dental operating microscope. Data were analyzed using one-way analysis of variance and Tukey HSD tests. The cement surface in the CP and HP groups presented changes in structure and elemental distribution compared with the remaining groups. The former groups exhibited a decrease in the calcium level and an increase in the silicon level and presented significantly fewer SBS values than the remaining groups (p<0.05). Most failures were adhesive in the CP and HP groups, while they were predominantly cohesive in the remaining groups. The bleaching agents with higher concentration induced deterioration of the cement surface and negatively affected the bond strength of the composite resin to CSC. The use of CSC is recommended as a cervical barrier when intracoronal bleaching is performed with a mixture of sodium perborate with water or 3% H2O2.


2018 ◽  
Vol 149 ◽  
pp. 01020 ◽  
Author(s):  
F. Amor ◽  
A. Diouri ◽  
A. Boukhari

Recently, the belitic cements with low alite content were the subject of several research works which aimed to replace the Ordinary Portland Clinker (OPC) for ecological reasons (reduction of CO2 emissions), so to understand the reactivity of this cement, the hydration study of the C2S “dicalcium silicate” phase is primordial research step. As well for a clean environment, the TiO2 photocatalyst has been extensively applied in the science of building materials because of its ability to degrade the cement surface pollutants. New photocatalyst based layered double hydroxides (LDH) associated with zinc, aluminium and TiO2 was introduced to increase the compatibility with mortars. The present work is subjected to investigate the effect of the layered double hydroxides on the hydration of C2S in following the evolution of hydration by X-ray diffraction at 2, 7, 28 and 90 days and analyzing the calcium/silicon ratio of different formed hydrates.


2018 ◽  
Vol 38 ◽  
pp. 01023
Author(s):  
Fan Yang ◽  
Minning Chen

The reclaimed water containing high salinity, great amounts of organic matters and high nutrients can easily lead to growth of biofilms in reclaimed water distribution systems (RWDSs). The microbes colonize the cement surface and microbial metabolites can cause cement biodeterioration. To understand the effect of microbial involvement in the degradation, this study investigated the transformation characteristics of cement-mortar lining and microbial biomass in the simulated RWDS for 1 year by X-ray diffractometer (XRD), X-Ray Fluorescenc (XRF), Heterophic bacteria count (HPC) and DAPI staining. Microbial metabolites were analyzed by GC/MS. The result shows that the carbonation reaction took place in the surface of the eroded cement-mortar lining where the content of CaCO3 was continuously increasing while the content of hydrated compounds were decreasing. The depositing layer of CaSO4·2H2O, CaAl2Si2O8·4H2O and Mg4Al2(OH)14·3H2O on the lining surface were formed by minerals such as Ca, Si, Al and Mg lost from the degraded hydrated compounds. Microbial biomass in the RWDS has maintained an increasing trend during the study. The main microbial metabolites of the biofilm on the cement surface are fatty acids, amino acids, and carbohydrate.


Sign in / Sign up

Export Citation Format

Share Document