Predicting the longitudinal elastic modulus of braided tubular composites using a curved unit-cell geometry

2010 ◽  
Vol 41 (3) ◽  
pp. 229-235 ◽  
Author(s):  
Cagri Ayranci ◽  
Jason P. Carey
1998 ◽  
Vol 305 (3-4) ◽  
pp. 209-212 ◽  
Author(s):  
Ulf Jaenicke-Rössler ◽  
Gernot Zahn ◽  
Peter Paufler ◽  
Holger Bitterlich ◽  
Günter Behr

2014 ◽  
Vol 1648 ◽  
Author(s):  
Michael Culler ◽  
Keri A. Ledford ◽  
Jason H. Nadler

ABSTRACTRemora fish are capable of fast, reversible and reliable adhesion to a wide variety of both natural and artificial marine hosts through a uniquely evolved dorsal pad. This adhesion is partially attributed to suction, which requires a robust seal between the pad interior and the ambient environment. Understanding the behavior of remora adhesion based on measurable surface parameters and material properties is a critical step when creating artificial, bio-inspired devices. In this work, structural and fluid finite element models (FEM) based on a simplified “unit cell” geometry were developed to predict the behavior of the seal with respect to host/remora surface topology and tissue material properties.


2021 ◽  
Vol 1046 ◽  
pp. 15-21
Author(s):  
Paiboon Limpitipanich ◽  
Pana Suttakul ◽  
Yuttana Mona ◽  
Thongchai Fongsamootr

Over the past years, two-dimensional lattices have attracted the attention of several researchers because they are lightweight compared with their full-solid counterparts, which can be used in various engineering applications. Nevertheless, since lattices are manufactured by reducing the base material, their stiffnesses then become lower. This study presents the weight efficiency of the lattices defined by relations between the elastic modulus and the weight density of the lattices. In this study, the mechanical behavior of 2D lattices is described by the in-plane elastic modulus. Experimental studies on the elastic modulus of the 2D lattices made of steel are performed. Three lattices having different unit cells, including square, body-centered, and triangular unit cells, are considered. The elastic modulus of each lattice is investigated by tensile testing. All specimens of the lattices are made of steel and manufactured by waterjet cutting. The experimental results of the elastic modulus of the lattices with the considered unit-cell patterns are validated with those obtained from finite element simulations. The results obtained in this study are also compared with the closed-form solutions founded in the literature. Moreover, the unit-cell pattern yielding the best elastic modulus for the lattice is discussed through weight efficiency.


Author(s):  
Sergey Demakov ◽  
Iana Kylosova ◽  
Stepan Stepanov ◽  
Matthias Bönisch

The present work develops a novel unified approach to describe the crystal structure of orthorhombic martensite (α′′) in Ti alloys independent of chemical composition. By employing a straightforward yet highly instructive solid sphere model for the basic tetrahedral structural unit the crystal structures involved in the β ↔ α′′/α′ martensitic transformation are categorized into several intermediate configurations. Importantly, a new metric is introduced, δ, which unambiguously characterizes the atomic positions inside the orthorhombic unit cell depending on unit-cell geometry. Furthermore, the exclusive use of relative quantities to describe unit-cell geometry and atom positions renders the approach developed herein independent of alloy content. In this way, shortcomings of commonly suggested structural metrics for α′′ are eliminated. Subsequently, the novel methodology is applied to analyse and compare the crystal structure of α′′ across a broad range of Ti alloys based on experimentally measured unit-cell parameters. From this analysis it emerges that a large fraction of structural configurations along the b.c.c.–Cmcm–h.c.p. transformation path is not observed in quenched alloys. The threshold between the not-observed and the remaining well observed configurations is identified with an ideal Cmcm crystal structure, relative to which the experimentally found α′′ is compressed along its c axis.


1971 ◽  
Vol 38 (293) ◽  
pp. 72-75 ◽  
Author(s):  
G. W. Smith ◽  
R. Walls

SummaryA re-examination of the mineral scolecite has shown that the previously published monoclinic (pseudo-orthorhombic) unit cell is face-centred and that the Hermann-Mauguin spacegroup symbol has been incorrectly assigned. The reduced monoclinic cell yields a 9·85 Å, b 18·98 Å, c 6·52 Å, β 110° 61; space group Aa. New indexed powder data are included.


Author(s):  
Gabriel Briguiet ◽  
Paul F. Egan

Abstract Emerging 3D printing technologies are enabling the design and fabrication of novel architected structures with advantageous mechanical responses. Designing complex structures, such as lattices, with a targeted response is challenging because build materials, fabrication process, and topological design have unique influences on the structure’s mechanical response. Changing any factor may have unanticipated consequences, even for simpler lattice structures. Here, we conduct mechanical compression experiments to investigate varied lattice design, fabrication, and material combinations using stereolithography printing with a biocompatible polymer. Mechanical testing demonstrates that a higher ultraviolet curing time increases elastic modulus. Material testing demonstrated that anisotropy does not strongly influence lattice mechanics. Designs were altered by comparing homogenous lattices of single unit cell types and heterogeneous lattices that combine two types of unit cells. Unit cells for heterogeneous structures include a Cube design for a high elastic modulus and Cross design for improved shear response. Mechanical testing of three heterogeneous layouts demonstrated how unit cell organization influences mechanical outcomes, therefore enabling the tuning of an elastic modulus that surpasses the law of averages designed for application-dependent mechanical needs. These findings provide a foundation for linking design, process, and material for engineering 3D printed structures with preferred properties, while also facilitating new directions in design automation and optimization.


2001 ◽  
Vol 67 (655) ◽  
pp. 527-532
Author(s):  
Nao-Aki NODA ◽  
Hironobu NISITANI ◽  
Yasushi TAKASE ◽  
Ken-Ichiro TAKEUCHI

Sign in / Sign up

Export Citation Format

Share Document