A critical review on the fused deposition modeling of thermoplastic polymer composites

2020 ◽  
Vol 201 ◽  
pp. 108336 ◽  
Author(s):  
Pavan Kumar Penumakala ◽  
Jose Santo ◽  
Alen Thomas
Author(s):  
Mohammad Shojib Hossain ◽  
David Espalin ◽  
Jorge Ramos ◽  
Mireya Perez ◽  
Ryan Wicker

Today, the use of material extrusion processes, like fused deposition modeling (FDM), in aerospace, biomedical science, and other industries, is gaining popularity because of the access to production-grade thermoplastic polymer materials. This paper focuses on how modifying process parameters such as build orientation, raster angle (RA), contour width (CW), raster width (RW), and raster-to-raster air gap (RRAG) can improve ultimate tensile strength (UTS), Young's modulus, and tensile strain. This was assessed using three methods: default, Insight revision, and visual feedback. On average, parameter modification through the visual feedback method improved UTS in all orientations, 16% in XYZ, 7% in XZY, and 22% in ZXY.


Author(s):  
Alberto S. de León ◽  
Fernando Núñez-Gálvez ◽  
Daniel Moreno-Sánchez ◽  
Natalia Fernández-Delgado ◽  
Sergio I. Molina

2021 ◽  
Vol 13 (2) ◽  
pp. 34-38
Author(s):  
Sabit Hasçelik ◽  
◽  
Ömer T. Öztürk ◽  
Sezer Özerinç ◽  
◽  
...  

Fused deposition modeling (FDM) is a widely used additive manufacturing technique for producing polymeric parts. While most commonly used FDM filaments are PLA and ABS, nylon is a widely used thermoplastic polymer in industry. This study investigated the mechanical properties of FDM-produced specimens made of nylon and quantified the effect of process parameters such as raster orientation and nozzle temperature on the mechanical properties. As the nozzle temperature increases, specimens become stronger with higher elongations at the break. This is mainly due to the improved fusion between the layers, provided by an expansion of the heat-affected zone. On the other hand, specimens with diagonal raster orientation exhibit higher elongations than those with perpendicular and parallel raster. The findings also emphasize the synergistic effects between nozzle temperature and printing orientation, showing that optimization should consider the two parameters together. Overall, FDM can produce strong nylon parts with adequate ductility suitable for load-bearing applications. However, achieving such results requires a detailed optimization of process parameters.


2020 ◽  
Vol 979 ◽  
pp. 74-83
Author(s):  
Penumuru Kumar ◽  
Arumugam Mahamani ◽  
B. Durga Prasad

In the present scenario, the industries are looking for creating the model quickly and making the prototype. Additive manufacturing (AM) is a rising technology for a hefty choice of applications. This route has plenty of advantages such as the availability of a wide range of materials, fabrication speed and resolution of the final components. The current paper deals with the review of the recent developments in additive manufacturing methods and their applications. Further, the discussion has been made about the various materials used for additive manufacturing such as ceramic, polymer, composites and biomaterials. The survey denotes that fused deposition modeling has received the widespread attention of the researchers. Finally, some of the gaps in the research are found and reported.


Sign in / Sign up

Export Citation Format

Share Document